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Aufgabenstellung

Der IT-Security-Hersteller Securepoint GmbH hat eine eigene OpenVPN-Client-Bibliothek
entwickelt, die in C geschrieben ist. Diese kommt in Securepoints VPN-Clients fiir Windows,
Android und iOS zum Einsatz. In Stabilitatsberichten der Clients hat sich gezeigt, dass die interne
OpenVPN-Client-Bibliothek eine haufige Ursache fiir Abstiirze war.

Das Ziel dieser Bachelorarbeit ist die prototypische Umsetzung einer portablen Client-Bibliothek fiir
das OpenVPN-Protokoll. Teil der Arbeit ist auch die Untersuchung der in dieser Hinsicht relevanten
Teile des Protokolls.

Der Prototyp soll eine bessere Speichersicherheit und Laufzeit-Stabilitit bieten und potenziell die
intern entwickelte OpenVPN-Client-Bibliothek in C langfristig ersetzen.

Dazu soll:

« eine Anforderungsanalyse an eine solche OpenVPN-Client-Bibliothek erfolgen, indem:
» die bestehende Softwarelosung untersucht wird
» die Funktionsweise des OpenVPN-Protokolls in relevanten Teilen untersucht wird

« ein Prototyp einer neuen OpenVPN-Client-Bibliothek entwickelt werden

« die Eignung des Prototyps als Alternative zur bestehenden Software bewertet werden
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1. Einleitung

Um zu verstehen, wie die Themenwahl dieser Bachelorarbeit zustande kam, wird im Folgenden die
zu 16sende Problemstellung geschildert. Zunachst méchte ich die Ausgangslage beschreiben, dann
die Probleme erldutern und schliefilich den Losungsansatz und dessen Umsetzung zusammenfassen.

1.1. Ausgangslage

Die Securepoint GmbH stellt fiir ihre Kunden Virtual Private Network (VPN)-Anwendungen fiir
Android, iOS, macOS und Windows bereit, die das OpenVPN-Protokoll unterstiitzen (Securepoint
GmbH, 2025). Um das Protokoll nicht auf jeder Platform erneut zu implementieren, greifen diese
Anwendungen auf eine intern entwickelte, portable Software-Bibliothek zuriick, die die clientseitige
Logik des OpenVPN-Protokolls implementiert.

Der Grund fiir die interne Reimplementierung ist, dass die offizielle OpenVPN-Software unter der
GNU General Public License Version 2 (GNU GPLv2) steht (OpenVPN Inc. and contributors, 2025).
Die GNU GPLv2 ist eine Open-Source-Lizenz, unterliegt jedoch dem Copyleft-Prinzip. Das bedeutet,
dass Software, die auf GNU GPLv2-lizenzierte Komponenten nutzt, ebenfalls unter der GPLv2
veroffentlicht werden muss. Securepoints VPN-Clients stehen aber nicht unter einer Copyleft-
Lizenz, weswegen die Verwendung der offiziellen OpenVPN-Software legal nicht mdglich ist.

Die interne OpenVPN-Client-Bibliothek ist in der Programmiersprache C geschrieben und
unterstiitzt einen grofien Teil der fir Clients relevanten Konfigurationsoptionen ([Firmen-interne
Quelle], Bastian Kummer, 2018).

Die Wahl von C erméglicht eine performante Implementierung und die Unterstiitzung aller
notwendigen Plattformen, birgt allerdings auch erhebliche Risiken. Bei C muss die
Speicherverwaltung manuell erfolgen, was ein betrachtliches Fehlerpotenzial birgt: Es kann zu
Speicherlecks oder Sicherheitsliicken fithren und Zugriffe auflerhalb des erlaubten Speicherbereichs
werden nicht erkannt, sondern fithren zum Programmabsturz (Devietti et al., 2008; Turner, 2014).

1.2. Probleme

In der Vergangenheit sind verschiedene Probleme im Zusammenhang mit der OpenVPN-Client-
Library aufgetreten, die hier kurz erklart werden sollen.

1.2.1. Abstiirze durch Verletzung der Speicherrechte

Im Sommer 2024 traten einige Abstiirze in der Android-App auf, die in der Google Play Console
gemeldet wurden. Dies geschah nach der Einfithrung des Features t1s-auth ([Firmen-interne
Quelle], 2024), welches OpenVPN-Servern das Filtern aller Pakete ohne giiltige Signatur erlaubt
(OpenVPN Inc., 2025a). Dort kam es zu einem Speicherzugriff auflerhalb des erlaubten
Speicherbereichs in der Funktion buffer_write. Das fiihrte dazu, dass das Android-Betriebssystem
den Prozess des VPN-Clients sofort beendet hat:

[split config.arm64 v8a.apk!libopenvpn-lib.so] string.h - buffer write
SIGSEGV

kkok kkk kX kkk kdkok kkk dokk kokk kkok okkok kokk dokk kkk kkok kkk kokX

pid: 0, tid: 26098 >>> de.securepoint.ms.agent <<<

backtrace:
#00 pc 0x000000000007f3e® /apex/com.android.runtime/1lib64/bionic/libc.so (memcpy+96)
#01 pc 0x000000000000f160 /data/app/de.securepoint.ms.agent-
nwypKagNhfaEftLHuuY2Ag==/split _config.arm64 v8a.apk!libopenvpn-1lib.so (buffer write+60)
(BuildId: 903fa70d9d98011772c6d33dd46e74f683d22e2c)

Listing 1: Backtrace eines Absturzes in buffer write durch einen Segmentation Fault unter Android
([Firmen-interne Quelle], 2024)



Modernere Programmiersprachen erlauben viele der in C méglichen Abstiirze gar nicht mehr. Sie
vermeiden mit anderen Speichermodellen ganze Kategorien von Fehlern. Rust beispielsweise
validiert alle Speicherreferenzen mit dem Compiler, sodass ihre sichere Nutzung bei Laufzeit des
Programms garantiert werden kann (The Rust Project Contributors, 2025a). Go 16st das Problem des
Speichermanagements, indem ein Garbage Collector nachweislich ungenutzte Referenzen erkennt
und ihre Speicherbereiche wieder freigibt (Donovan & Kernighan, 2016). Beide Falle demonstrieren,
dass moderne Programmiersprachen Speichermanagement vereinfachen und somit auch Fehler
darin zumindest reduzieren kénnen.

1.2.2. Performance-Probleme durch suboptimale Integration

Die Integration der C-Bibliothek in die Clients fiir verschiedene Plattformen gestaltet sich
aufwendig. Dies fithrt hiufig dazu, dass Entwickler funktionierende, aber schwer nachvollziehbare
und qualitativ nicht optimale Implementierungen beibehalten. So auch in diesem Beispiel:

Vor drei Jahren ist aufgefallen, dass Uploads iiber die VPN-Verbindung unter iOS deutlich langsamer
waren als auf anderen Plattformen. Die Ursache dieses Fehlers war die Tatsache, dass die OpenVPN-
Library unter iOS nicht direkt mit dem Socket interagiert hat, wie es auf den anderen Plattformen
der Fall ist.

Stattdessen wurde in einem Read-Loop aktiv gewartet, ob es Pakete zu verschicken gab. Wenn es ein
Paket fiir den Upload gab, wurde es an die C-Bibliothek gereicht, die jedes Paket als Pointer wieder
an die i0S-App zuriick tibergeben hat. Die Daten des Pointers wurden in einen Apple-Datentyp Data
kopiert (Apple Inc., 2025a). Diese Kopie wurde dann fiir den Upload tiber Apples Netzwerk-API in
den Socket geschrieben. ([Firmen-interne Quelle], 2022a; 2022b).

Die Losung des Problems war die Nutzung der Implementierung fiir FreeBSD, die fiir interne
Zwecke bereits unterstiitzt wurde ([Firmen-interne Quelle], 2022b). Dies war ohne viele
Anpassungen moglich, da Apples XNU-Kernel seine Urspriinge zum Mach-Kernel von der Carnegie
Mellon University und zu FreeBSD zuriickverfolgen kann (Apple Inc., 2025b).

Moderne Sprachen bieten fiir die Integration von Libraries in z.B. Apps fiir Android und iOS oftmals
Tooling, das diese Bindings automatisch generieren kann. Das erleichtert die Integration und
verhindert Probleme wie das das oben beschriebene. Es gibt beispielsweise gomobile fiir die
Programmiersprache Go, womit Bindings zu einer Go-Library fiir die Sprachen der jeweiligen
Plattformen generiert werden kénnen. Fiir iOS kénnen Objective-C-Bindings erzeugt werden und
fur Android Bindings fiir Java (Google LLC, 2025a).

gomobile wurde bei Securepoint bereits erfolgreich eingesetzt, um eine DNS-over-HTTPS-App fiir
Android zu realisieren ([Firmen-interne Quelle], Securepoint GmbH, 2025).

1.2.3. Build-Konfiguration und Deklaration von Abhingigkeiten

Es gibt zudem noch ein weiteres Problem: C hat kein Standard-Build-System. Abhéngigkeiten
koénnen oft nicht zentral in einer Datei angegeben werden, wie es bei modernen
Programmiersprachen wie Go mit go.mod-Dateien (Google LLC, 2025b) oder Rust mit Cargo. toml-
Dateien (Rust contributors, 2025) der Fall ist.

Es gibt zwar Losungen mit Makefile oder CMakeLists. txt, allerdings ist deren Konfiguration und
Einsatz meiner Erfahrung nach aufwendiger, da man dort z.B. noch den Compiler und Linker
festlegen muss.

Auflerdem ist dort keine Verwaltung von externen versionierten Abhéngigkeiten integriert. Es wird
erwartet, dass man weif}, wie man die Abhangigkeiten manuell so installiert, dass sie gefunden und
genutzt werden konnen. Es werden tendenziell kleinere Abhéngigkeiten direkt ins Projekt kopiert,
was dann einen - meines Erachtens nach — komplexeren Update-Prozess nach sich zieht (Ronin,
2016). Wenn man komfortablere Losungen moderner Programmiersprachen gewohnt ist, sind einem



diese Losungen wahrscheinlich zwangsweise suspekt. Die Programmiersprache Go zum Beispiel
wurde dazu entwickelt, Probleme eines C++-Projekts zu 16sen, darunter auch die aufwendige
Verwaltung von Software-Abhéngigkeiten, die Entwicklern Zeit kostet (Pike, 2023).

1.3. Losungsansatz
Im Betrieb kam die Idee auf, die OpenVPN-Client-Library in einer speichersicheren
Programmiersprache zu reimplementieren.

Um dieses Unterfangen strukturiert anzugehen, muss:

das OpenVPN-Protokoll analysiert werden

die bestehende Software-Losung analysiert und dokumentiert werden

die Schnittstelle der aktuell genutzten OpenVPN-Library dokumentiert werden

eine geeignete speichersichere Programmiersprache identifiziert werden

der Teil des Protokolls, der fiir einen Client-Prototypen relevant ist, identifiziert werden

SR o

der relevante Teil fiir einen Prototypen in der gewahlten Programmiersprache
plattformiuibergreifend (portabel) implementiert werden

7. die bestehende Software-Losung mit dem erarbeiteten Prototypen verglichen werden, um die
Eignung des Prototypen als Ersatz fiir die bestehende Losung zu ermitteln.

Die komplette Implementierung ist im Rahmen einer Bachelorarbeit unrealistisch, aber die
Dokumentation des Protokolls sowie die Implementierung eines teilweise funktionalen Prototyps
scheint in drei Monaten méglich zu sein.

1.4. Umsetzung

Nach einem kurzen Uberblick iiber Kryptografie und VPNs wird das Protokoll griindlich, aber nicht
vollstandig beschrieben und Problematiken mit dem Protokoll in einem Fazit erortert. Danach wird
die bereits implementierte Client-Bibliothek analysiert und relevante Komponenten und
Schnittstellen identifiziert. Es werden die Programmiersprachen Go und Rust auf ihre Eignung zur
Implementierung eines VPN-Clients verglichen und anhand der Vergleichskriterien wird Go
ausgewahlt. Anhand der Analysen des Protokolls und der bestehenden Software-Losung werden
Anforderungen an den Prototypen sowie seine Schnittstellen definiert. Die Implementierung des
Prototyps und die Herausforderungen dabei werden erértert. Der Prototyp wird aufgrund
technischer Probleme und einem Mangel an Zeit nicht fertiggestellt, implementiert aber schon viele
wichtige Anforderungen. Abschlieflend wird die bestehende Implementierung mit dem Prototypen
verglichen, wobei neben den funktionalen Anforderungen auch qualitative Aspekte der Software-
Entwicklung beriicksichtigt werden.



2. Uberblick

Bevor wir uns VPNs genauer ansehen, ergibt es Sinn, den Begriff kurz zu erortern. Ferguson &
Huston (1998) haben diesen Begriff wie folgt definiert:

«

~A VPN is private network constructed within a public network infrastructure [...].

— Ferguson & Huston (1998)

Was in dieser Definition etwas zu kurz kommt, ist das ,Virtual® in Virtual Private Network.
Raymond (1993) definiert ,virtual® als ,logical® oder auch als vom Betriebssystem simuliert. Man
konnte also vielleicht zur Definition von Ferguson & Huston (1998) ergianzen:

Bei VPNs handelt es sich um logische Netze, die vom Betriebssystem simuliert werden.

Es gibt verschiedene Anwendungsfille, bei denen VPNs zum Einsatz kommen koénnen. Ein héaufiges
Szenario fiir die Verbindung von verschiedenen Netzen ist die Site-to-Site-Verbindung. Eine Site-to-
Site-Verbindung verbindet zwei Netzwerke miteinander. Das ist vor allem bei Unternehmen ein
verbreiteter Einsatz-Modus, um z.B. verschiedene Firmen-Standorte miteinander zu vernetzen. In so
einem Szenario konnte zum Beispiel ein Client im Netz des einen Netzwerks auf einen Server im
Netz eines anderen Standorts zugreifen.

In Abbildung 1 ist eine vereinfachte schematische Darstellung eines Site-to-Site-VPNs dargestellt:

Internet

Client O Client 1

VPN-Gateway O ) VPN-Gateway 1

Server 0 Server 1

Abbildung 1: Site-to-Site-VPN

Wenn man nun einige Mitarbeiter im Homeoffice oder Auflendienst hat, sind diese nicht in einem
Netzwerk der Firma. Fiir solche Falle gibt es End-to-Site-Verbindungen. Eine End-to-Site-Verbindung
verbindet einen einzelnen Client mit einem Netzwerk (siehe Abbildung 2). Dieses Szenario wird bei
der bestehenden Bibliothek und dem zu entwickelnden Prototypen angenommen.

Internet
VPN-Client 0 VPN-Tunnef o Server 0
VPN-Tunnel 1 VPN-Gateway
VPN-Client 1 Server 1

Abbildung 2: End-to-Site-VPN



2.1. Informationssicherheit in VPNs

Der Einsatz von Kryptografie dient meist einem der folgenden Ziele der Informationssicherheit, die
auf Englisch als ,,CIA-Triad” bekannt sind (Stobitzer, 2017):

« Confidentiality (Vertraulichkeit)

+ Integrity (Integritat)

« Availability (Verfiigbarkeit)

Manchmal wird statt ,Availability” ,Authenticity” (dt. Authentizitét) als alternatives Ziel genannt
(Bundesamt fir Sicherheit in der Informationstechnik, 2023).

Authentizitat
Abbildung 3: Die Schutzziele der Informationssicherheit nach
Bundesamt fiir Sicherheit in der Informationstechnik (2023)

2.1.1. Vertraulichkeit

Definition 1: Vertraulichkeit

Vertraulichkeit bedeutet, dass Unbefugten kein Informationsgewinn maoglich ist.

Vertraulichkeit kann tiber Verschliisselung der Informationen hergestellt werden. Verschliisselung
kann mit symmetrischer Verschliisselung umgesetzt werden, wie dem Advanced Encryption
Standard (AES) (National Institute of Standards and Technology, 2001), dem ChaCha-
Verschliisselungsverfahren (Nir & Langley, 2018) oder mit Public-Key-Verschliisselung wie der
Rivest-Shamir-Adleman (RSA) Verschliisselung (Rivest et al., 1978) oder dem Elgamal-
Verschliisselungsverfahren (Elgamal, 1985).

Public-Key-Kryptografie, auch asymmetrische Kryptografie genannt, unterscheidet sich von der
symmetrischen Kryptografie in der Anzahl der Schliissel und wie diese Schliissel eingesetzt werden:

Bei der symmetrischen Kryptografie kommt ein Schliissel zum Einsatz, den sowohl Sender als auch
Empfanger nutzen, um Informationen zu verschliisseln und auch wieder zu entschliisseln. Die
Operation der Kryptografie ist also mit dem selben Schliissel reversibel.

Bei der asymmetrischen Kryptografie kommt ein Schliisselpaar zum Einsatz, das aus privatem und
offentlichem Schliissel besteht. Das Schliisselpaar wird mit kryptografischen Verfahren generiert,
sodass der private Schliissel Nachrichten entschliisseln kann, die mit dem 6ffentlichen Schliissel
verschliisselt wurden.

Der private Schliissel muss geheim bleiben, aber der 6ffentliche Schliissel kann frei geteilt werden.

Die Eigenschaft, die asymmetrische Kryptografie ausnutzt, ist die Tatsache, dass die Operationen mit
privatem und 6ffentlichem Schliissel leicht sind, ohne privaten Schliissel aber praktisch irreversibel




sind. Man spricht von einer Falltirfunktion (Rivest et al., 1978), da selbst Supercomputer ausreichend
grof3e Schliissel niemals ermitteln konnen (Andrew, 2021).

2.1.2. Integritit

Definition 2: Integritat

Integritat bedeutet, dass Informationsmanipulation von Unbefugten zumindest erkannt
werden kann.

Um die Integritat einer Nachricht zu iiberpriifen, werden Priifsummen eingesetzt. Prifsummen
werden vom Sender erzeugt und dem Empfanger mitgeteilt. Der Empfanger kann aus der Nachricht
eine eigene Priffsumme erzeugen. Wenn die eigene Prifsumme mit der des Senders tibereinstimmt,
ist die Nachricht mit sehr hoher Wahrscheinlichkeit unverfalscht (Bundesamt fir Sicherheit in der
Informationstechnik, o. J.).

Ubertrigt man nun allerdings Daten iiber einen 6ffentlichen Kanal, kénnte eine einfach Priifsumme
von einem Angreifer nach der Manipulation der Nachricht neu erzeugt werden. Daher werden in der
Praxis Hash-based Message Authentication Codes (HMACs) verwendet. HMACs werden nicht nur
mit einer Nachricht, sondern auch einem geheimen Schliissel erzeugt, den nur Sender und
Empféanger haben. Ein HMAC kann daher von potenziellen Angreifern praktisch nicht neu erzeugt
werden (Krawczyk et al., 1997).

2.1.3. Verfiigbarkeit

Definition 3: Verfiigbarkeit

Verfiigbarkeit bedeutet, dass die korrekte Funktionsweise eines Systems gewabhrleistet
ist. Andersrum heil’t es, dass es nicht mdglich ist, das System ohne Befugnis von der
korrekten Funktionsweise abzuhalten.

Verfugbarkeit ist im Kontext von VPNs vor allem in Hinsicht auf Server relevant. Ein Beispiel fur die
Verletzung der Verfiigbarkeit ist eine erfolgreiche Denial of Service (DoS)-Attacke (Stobitzer, 2017).
Eine solche DoS-Attacke haben Quarkslab SAS (2017) erfolgreich fiir bestimmte Konfigurationen des
OpenVPN-Protokolls konstruiert.

2.1.4. Authentizitit

Definition 4: Authentizitat

Authentizitat bedeutet, dass die Identitat eines Kommunikationspartners tiberpriifbar und
echtist.

Authentizitit kann kryptografisch tiber Signaturen gewéhrleistet werden. Typische Signaturen
bauen auf Public-Key-Kryptografie auf. Damit kénnen in einigen Fallen auch Nachrichten mit dem
eigenen privaten Schliissel so ,signiert” werden, dass man unter Verwendung des 6ffentlichen
Schlissels die Authentizitat einer Nachricht beweisen kann.

OpenVPN kann optional HMACs nutzen (bekannt als ,TLS-Auth® oder ,HMAC authenticated
control channel packets®), um die Authentizitit von Clients schon beim Aufbau der Verbindung zu



priifen (Schwabe, 2016). Da der OpenVPN-Server somit alle Nachrichten ohne valide HMAC
verwerfen kann, ist der DoS-Angriff von Quarkslab SAS (2017) so nicht mehr moglich.

2.1.5. Schliisselaustausch

VPNs stehen wie alle verschliisselten Verbindungen vor dem Problem des sicheren
Schlisselaustauschs. Das Problem besteht darin, dass die Kommunikationspartner die
Kommunikation iiber ein offentliches, abhdrbares Medium wie das Internet aufbauen miissen.

Géngige VPN-Protokolle wie IPSec (Kaufman et al., 2014), WireGuard (Donenfeld, 2015) und
OpenVPN nutzen dabei alle den Diffie-Hellman-Schliisselaustausch (Schwabe, 2016), (Rescorla &
Dierks, 2008). Der Diffie-Hellman-Schliisselaustausch erlaubt es, einen Schliissel tiber einen
unsicheren Kanal mit einem Kommunikationspartner auszutauschen (Rescorla, 1999).

Der grobe Ablauf ist dabei wie folgt:

1. Es werden offentliche Parameter mit dem Kommunikationspartner festgelegt.

2. Die offentlichen Parameter werden mit dem eigenen privaten Schliissel kryptografisch kombiniert
(was nicht rickgéingig zu machen ist).

3. Diese kryptografisch kombinierten Schliisseldaten werden iiber den 6ffentlichen Kanal
ausgetauscht.

4. Die empfangenen Schliisseldaten des Kommunikationspartners werden mit dem eigenen privaten
Schlissel kryptografisch kombiniert.

5. Das Ergebnis ist ein geteilter Schliissel, der dann fiir symmetrische Verschliisselung verwendet
werden kann.

2.2. VPN-Protokolle
Es gibt mehrere verbreitete VPN-Protokolle, die heute noch zum Einsatz kommen. Zu den am
haufigsten verwendeten Protokollen zéhlen IPSec, OpenVPN und WireGuard (Lyons, 2025).

IPSec unterscheidet sich dabei von den anderen beiden insofern, als dass es auf Internet-Protokoll-
Ebene agiert (Frankel & Krishnan, 2011; Kaufman et al., 2014). Mit Hardwarebeschleunigung ist
IPSec eine schnelle und relativ leicht einsetzbare Losung (Frikin, 2022). Auflerdem erfreut sich IPSec
breiter Integration in Betriebssystemen: So ist es in den Linux-Kernel integriert und unter Android,
i0S, macOS und Windows verfiigbar (The strongSwan Team, 2025). IPSec hat den Ruf, schwierig zu
konfigurieren zu sein und verschiedene Software-Versionen zu haben, die untereinander nicht
vollstandig kompatibel sind (Frikin, 2022).

WireGuard ist ein relativ neues Protokoll, das eine hohe Flexibilitit aufweist, obwohl es weniger
Konfigurationsoptionen bietet. Eine Implementierung ist auflerdem seit 2020 mit Version 5.6 im
Linux-Kernel (Donenfeld, 2020). Der Datendurchsatz von WireGuard kann in vielen Szenarien mit
IPSec mithalten oder ist sogar schneller (Donenfeld, 2022).

OpenVPN zeichnet sich vor allem durch eine hohe Konfigurabilitit aus (Lyons, 2025). Es kann
aufgrund seiner Flexibilitat vielseitig eingesetzt werden, zum Beispiel in Unternehmen zur
Vernetzung von Filialen oder fiir den Zugriff auf interne Netzressourcen durch Mitarbeiter im
Homeoffice. Es ist allerdings nicht besonders schnell (Donenfeld, 2022).

Um hier einen Eindruck der Performance-Charakteristiken zu vermitteln, folgen die Ergebnisse
eines Firmen-internen Benchmarks, bei dem der VPN-Durchsatz von Securepoint Firewalls der G5-
Serie getestet wurde. Dazu wurde ein Site-to-Site-VPN zwischen der jeweiligen G5-Firewall und
einem deutlich leistungsstarkeren Prototypen mit Default-Einstellungen konfiguriert. Im internen
Netz jeder Firewall befanden sich jeweils ein Rechner. Diese Rechner haben mit dem Messungstool
iperf3 den Datendurchsatz iiber das jeweilige VPN ermittelt ([Firmen-interne Quelle], Mario Rhein,
2025):
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Abbildung 4: Ergebnisse eines Firmen-internen VPN-Benchmarks der G5-Modelle

([Firmen-interne Quelle], Mario Rhein, 2025)

Abbildung 4 zeigt, dass OpenVPN bei den mittelstarken Modellen Black Dwarf Pro, RC100 und
RC200 sehr gut performt. Bei den stirkeren Modellen zeigt hingegen WireGuard die beste
Performance; sowohl IPSec als auch OpenVPN laufen auf RC300S, RC350R, RC400R und RC1000R
nicht einmal halb so gut: Sie bieten ca. 1500 Mbit pro Sekunde Daten-Durchsatz, wahrend
WireGuard auf der RC1000R tiber 5500 Mbit/s erreicht.

Da die Verschliisselungsalgorithmen der verschiedenen VPN-Protokolle auf ihren jeweiligen
Standard-Einstellungen waren, konnte eine Angleichung die Vergleichbarkeit verbessern.
WireGuard unterstiitzt ausschliefSlich ChaCha20-Poly1305, deshalb wiirde sich dieser Algorithmus
fiir einen Benchmark anbieten (Donenfeld, 2015).

2.3. OpenVPN im OSI-Schichten-Modell

OpenVPN nutzt vom Betriebssystem bereitgestellte, virtuelle Netzwerkgerite. Uber diese
Netzwerkgerite werden die Nutzdaten an das VPN gesendet oder davon empfangen. Je nach
Konfiguration arbeitet OpenVPN dabei entweder auf der Sicherungsschicht mit TAP-Devices oder
der Netzwerkschicht mit TUN-Devices (Yonan, 2018). TAP-Devices verarbeiten Ethernet-Frames,
wihrend TUN-Devices IP-Packets verarbeiten (Krasnyansky et al., 2002).

Die Nutzdaten werden vom Betriebssystem an dieses virtuelle Netzwerkgerat geroutet und von dort
durch OpenVPN entgegengenommen, verschliisselt und verpackt. Das Ergebnis wird in der Regel
itber das Internet iibertragen und auf der Gegenseite wieder entpackt, entschliisselt und iiber das
dortige virtuelle Netzwerkgerit in das Zielnetzwerk geroutet.

Die Kommunikation zwischen den Endpunkten erfolgt tiber das Transmission Control Protocol
(TCP) oder das User Datagram Protocol (UDP) (Transport-Schicht). Um die Nutzdaten {ibertragen zu
koénnen, muss erst eine Verbindung aufgebaut werden. Dazu wird eine Sitzung durch den Client
initiiert, die Verbindungspartner authentifiziert und kryptografisch abgesichert (Sitzungsschicht).
Nach der erfolgreichen Aushandlung der Verbindungsparameter wird diese verschliisselte
Verbindung fiir den sicheren Transport der Nutzdaten verwendet (Schwabe, 2016). Da OpenVPN an
sich schon eine Anwendung ist, wird das OpenVPN-Protokoll der Anwendungsschicht zugeordnet.
OpenVPN-Anwendungen transportieren also als Nutzdaten Ethernet-Frames oder IP-Packets, die

10



dann selbst als Nutzdaten die Daten der héheren Schichten enthalten, wie etwa das Hypertext
Transfer Protocol Secure (HTTPS).

Die Abbildung 5 visualisiert beispielhaft den Weg eines IP-Packets von einem Client zu einem

Server.
Client Server
IP-Packet IP-Packet
geroutet vom } geroutet ans
Betriebssystem | Betriebssystem
' TUN-Device | ' TUN-Device |
A
gelesen vom schreibt auf das
\J
(OpenVPN-CIient) (OpenVPN-Server)

schreibt verarbeitetes ' wird ausgelesen und
Paket auf den i TCP-Verbindung verarbeitet von

| TCP-Socket |<(

Abbildung 5: Beispielhafter Weg eines IP-Packets iiber einen OpenVPN-Tunnel

)>| TCP-Socket |

OpenVPN-Header IP-Packetl

3. Analyse des OpenVPN-Protokolls

Damit das OpenVPN-Protokoll implementiert werden kann, muss es zunachst verstanden werden.
Das OpenVPN-Protokoll hat sich seit der Einfithrung stetig weiterentwickelt. Dadurch gibt es viele
Einstellungsmoglichkeiten, die heute nicht mehr empfohlen werden. Dazu gehort der Static-Key-
Mode, bei dem ein Pre-shared Key zur Verschliisselung genutzt wird. Ohne Session Keys und andere
moderne kryptografische Praktiken ist dieser Modus nicht nur unsicher, sondern auch deprecated
(Schwabe, 2016).

Der empfohlene OpenVPN-Modus ist der Transport Layer Security (TLS)-Mode. OpenVPN im TLS-
Mode unterscheidet grundsatzlich zwischen zwei Channels: Der Control-Channel dient der
Authentifizierung und Aushandlung der Verbindungsparameter, wahrend der Data-Channel die
ausgehandelten Parameter nutzt, um Daten symmetrisch verschliisselt zu tibertragen.
Control-Channel und Data-Channel teilen sich dabei eine Verbindung (iiber UDP oder TCP) und
werden iiber Opcodes unterschieden.

3.1. Struktur von OpenVPN-Paketen

OpenVPN-Pakete unterscheiden sich fiir TCP und UDP in einem Punkt: TCP-Pakete beginnen mit
zwei Bytes, die die Lange des restlichen Pakets beinhalten. Dies ist erforderlich, da bei TCP die
Daten ab einer gewissen Grofle segmentiert werden. Uberschreiten die zu sendenden Daten die
Maximum Segment Size, werden die Daten in Segmente unterteilt iibertragen und miissen beim
Empfanger wieder zusammengesetzt werden (Eddy, 2022). Opcodes befinden sich im ersten Byte (bei
TCP im dritten) eines jeden Pakets in den hoherwertigen 5 Bits. Darauf folgen 3 Bits Key-ID
(Schwabe, 2016). Die darauf folgenden Bytes beinhalten die Daten fiir Control-Channel oder Data-
Channel.
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Tabelle 1 zeigt diesen Aufbau schematisch. In der ersten Zeile ist eine Beschreibung des Paket-
Abschnitts, in der zweiten Zeile die Linge des Abschnitts und in der dritten Zeile sind weitere
Hinweise.

Tabelle 1: Aufbau eines OpenVPN-Pakets

Paket-Linge Opcode Key-ID Daten
2 Byte 5 Bit 3 Bit 0 bis n Byte
nur TCP von Control-Channel
oder Data-Channel

Neben CONTROL-Packets und DATA-Packets gibt es auflerdem noch ACK-Packets, die zu den CONTROL-
Packets zdhlen. Sie dienen dazu, die fiir TLS erforderliche Zuverlassigkeit des Control-Channels
sicherzustellen, was bei UDP sonst nicht gegeben wire. Allerdings kénnen auch andere CONTROL-
Packets bis zu vier Acknowledgements beinhalten.

3.2. Opcodes

,Opcode” steht fiir ,operation code®. Die Opcodes dienen zur Unterscheidung verschiedener
OpenVPN-Pakete. Der Begriff wird ofter fiir Prozessor-Instruktionen verwendet (Intel Corp., 1973)
und ist in diesem Kontext am ehesten mit TCP Control-Bits vergleichbar (Eddy, 2022). Ahnlich wie
bei TCP gibt es bei OpenVPN zum Beispiel Opcodes, um eine Verbindung zu initiieren und einen
Opcode um Pakete als empfangen zu kommunizieren (Schwabe, 2016).

Die vollstindige Liste aller OpenVPN-Opcodes mit ihrem jeweiligen Wert, Namen und
Verwendungszweck sieht wie folgt aus:

Tabelle 2: Ubersicht iiber OpenVPN-Opcodes (Schwabe, 2016)

Wert Opcode Verwendungszweck

1 CONTROL_HARD_RESET_CLIENT V1 obsolet
2 CONTROL_HARD_RESET SERVER V1 obsolet

3 CONTROL_SOFT RESET V1 Initiiert erneuten TLS-Handshake bei einer
stehenden Verbindung
4 CONTROL_V1 Kontrollpaket, verkapselt meist TLS-Handshake
5 ACK_ V1 Bestatigt Empfang fiir bis zu 8 Kontrollpakete
6 DATA V1 Datenpaket fiir Transport durch das VPN
7 CONTROL_HARD_RESET CLIENT_V2 Initiierung der Verbindung
8 CONTROL_HARD_RESET SERVER V2 Bestitigt Initiierung der Verbindung
9 DATA V2 Datenpaket mit Peer-ID
10 CONTROL_HARD_RESET_CLIENT V3 Initiierung der Verbindung mit TLS-Crypt
11 CONTROL_WKC_V1 CONTROL_V1 fur TLS-Crypt

Obsolete Opcodes

CONTROL_HARD RESET CLIENT V1 und CONTROL HARD RESET SERVER V1 waren die Opcodes zum
Verbindungsaufbau mit ,,TLS Key method 1%. Diese Art des Verbindungsaufbaus wird seit 2020 nicht
mehr unterstiitzt, da sie nur zur Abwértskompatibilitat fiir OpenVPN-Clients vor Version 2.0
erforderlich war (Schwabe, 2020). Das Release-Datum von OpenVPN 2.0 war nicht auffindbar.
GitHubs erster Versions-Tag war v2.1 rcl von November 2006 (OpenVPN Inc. and contributors,
2006). OpenVPN schreibt in der Software-Dokumentation, dass die Version 2.0-betal7 im
November 2004 erschien (OpenVPN Inc., 2025b).
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Da diese Opcodes also seit ungefihr 20 Jahren nur noch dem Zweck der Abwértskompatibilitat
dienen, wird hier auf genauere Ausfithrungen zur , TLS Key method 1 verzichtet. Schwabe (2016)
schreibt aulerdem, dass diese Opcodes in Zukunft fiir andere Zwecke wiederverwendet werden
konnten, wenn alle anderen moglichen Opcodes belegt sein sollten.

Opcode CONTROL_SOFT_RESET_V1
Dieser Opcode leitet einen erneuten TLS-Handshake ein. Dies geschieht, sofern nicht anders
konfiguriert, nach einer Stunde.

Opcode CONTROL_V1

Dieser Opcode markiert ein Kontrollpaket. Pakete beinhalten beispielsweise den TLS-Handshake
oder Nutzernamen, Passwort und Schliisselmaterial, nachdem der TLS-Handshake die Verbindung
erfolgreich abgesichert hat. Ein CONTROL_V1-Packet kann bis zu 4 Acknowledgements beinhalten.

Opcode ACK_V1
Dieser Opcode dient dazu, Kontrollpakete als empfangen an die andere Seite zu kommunizieren. Ein
ACK_V1-Packet kann bis zu 8 Acknowledgements beinhalten.

Opcode DATA_V1
Dieser Opcode markiert Data-Channel-Packets.

Opcode CONTROL_HARD_RESET_CLIENT V2
Dieser Opcode initiiert den Verbindungsaufbau mit dem Server.

Opcode CONTROL_HARD_RESET_SERVER_V2
Dieser Opcode beantwortet die Verbindungsaufbau-Nachricht des Clients.

Opcode DATA_V2
Dieser Opcode markiert Data-Channel-Packets, die eine zusatzliche Peer-ID von 24 Bit beinhalten.

Opcode CONTROL_HARD_RESET_CLIENT V3
Dieser Opcode initiiert den Verbindungsaufbau mit dem Server, wenn tls-crypt-v2 konfiguriert ist.

Opcode CONTROL_WKC_V1
Aquivalent zu CONTROL V1, allerdings nur fir tls-crypt-v2. WKC® oder WK, steht fiir ,Wrapped
Client Key*.

3.3. Control-Channel-Pakete
Die Initiierung einer OpenVPN-Session (vgl. Abbildung 6) nutzt Control-Channel-Pakete. Thre
Struktur ist im OpenVPN-RFC-Entwurf von Schwabe (2016) wie folgt definiert:

Tabelle 3: Aufbau eines Control-Channel-Pakets

Eigene Session-ID | Anzahl ACKs ACKs Peer Session-ID Paket-ID Daten
8 Byte 1 Byte 4 Byte x 8 Byte 4 Byte 0 bis n Byte
Anzahl ACKs
nur wenn nur wenn nicht in ACK_V1 | je nach Opcode
Anzahl ACKs > 0 | Anzahl ACKs > 0

Tabelle 3 zeigt in der ersten Zeile den Inhalt des Paket-Abschnitts, in der zweiten Zeile die Linge
und in der dritten Zeile stehen Kommentare, wie zum Beispiel die Ausnahme, dass ACK_V1-Packets
keine Paket-ID enthalten. Der Grund dafiir ist, dass ACK_V1-Packets nicht acknowledged werden
diirfen (Schwabe, 2016). Wiirde man jedes ACK_V1 mit einem ACK V1 beantworten, wire man in einer
Endlosschleife aus Acknowledgements gefangen.
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3.4. OpenVPN-Session-Aufbau
Laut Quarkslab SAS (2017) geht der Verbindungsaufbau wie folgt vonstatten:

CONTROL_HARD RESET CLIENT V2

L}

CONTROL_HARD RESET SERVER V2

< > OpenVPN Session Initiation

'ACK_V1 1

»!

I I p,

__ TLS Handshake ! )

»

CONTROL_V1 > TLS Handshake & Key Negotiation

CK V1

v

\ /

w

} IP Packet Exchange (Data Tunneling)
CONTROL_SOFT_RESET V1

' DATA_V1/ DATA V2
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TLS Handshake
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I
I
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Abbildung 6: Ablauf einer OpenVPN-Session (Quarkslab SAS, 2017)

3.5. Initiierung der OpenVPN-Session

Die Initiierung der OpenVPN-Session besteht aus einem Drei-Wege-Handschlag, vergleichbar mit
dem von TCP (Quarkslab SAS, 2017), vgl. Abbildung 6.

1. Der Client verschickt ein CONTROL_HARD RESET CLIENT V2.
« 2 Bytes fiir die Lange des restlichen Pakets (nur bei TCP)
« 5 Bit CONTROL HARD RESET CLIENT V2 (0x07), gefolgt von 3 Bit Key-ID 0
+ 8 Bytes Client-Session-ID (randomisiert)
« 1Byte fir die Anzahl an ACKs, hier immer 0
+ 4 Bytes Packet-ID, hier immer 0
2. Der Server antwortet mit CONTROL_HARD RESET SERVER V2.
+ 2 Bytes fiir die Lange des restlichen Pakets (nur bei TCP)
« 5 Bit CONTROL_HARD RESET SERVER V2 (0x08), gefolgt von 3 Bit Key-ID 0
« 8 Bytes Server-Session-ID (randomisiert)
« 1 Byte fiir die Anzahl an ACKs, hier immer 1 fiir das CONTROL _HARD RESET CLIENT V2-Packet
+ 1 x 4 Bytes ACK fiir Packet-ID vom CONTROL _HARD RESET_CLIENT V2-Packet, hier immer 0
8 Bytes Client-Session-ID vom CONTROL _HARD RESET CLIENT V2-Packet
« 4 Bytes Packet-ID, hier immer 0
3. Der Client antwortet mit einem ACK_V1.
+ 2 Bytes fiir die Lange des restlichen Pakets (nur bei TCP)
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5 Bit ACK_V1 (0x05), gefolgt von 3 Bit Key-ID 0

8 Bytes Client-Session-ID (randomisiert)

1 Byte fiir die Anzahl an ACKs, hier 1 fiir das Paket vom Server

4 Bytes fiir das Acknowledgement der Packet-ID des CONTROL_HARD RESET_CLIENT V2-Packets
8 Bytes fiir die Session-ID des Peers, bekannt aus dem CONTROL _HARD RESET CLIENT V2-Packet

3.6. TLS-Handshake in OpenVPN

Der TLS-Handshake und was darin passiert war in Schwabe (2016) zum Zeitpunkt meiner Recherche
noch nicht beschrieben. Daher habe ich versucht, mit Wireshark nachzuvollziehen, was fiir
Nachrichten in welchem Format ausgetauscht werden miissen. Ich habe die Ausgabe etwas editiert,
um sie ibersichtlicher zu gestalten:

No. Source Destination Protocol Length Info

1 192.168.178.22 195.4.128.60 OpenVPN 82 MessageType: P_CONTROL HARD RESET CLIENT V2
2 195.4.128.60 192.168.178.22 OpenVPN 94 MessageType: P_CONTROL HARD RESET SERVER V2
3 192.168.178.22 195.4.128.60 OpenVPN 90 MessageType: P_ACK V1

4 192.168.178.22 195.4.128.60 TLSv1l.3 391 Client Hello

5 195.4.128.60 192.168.178.22 TLSv1l.3 1264 Server Hello, Change Cipher Spec,

Application Data (reassembled)

6 195.4.128.60 192.168.178.22 OpenVPN 1506 MessageType: P_CONTROL V1
7 192.168.178.22 195.4.128.60 OpenVPN 90 MessageType: P_ACK V1

8 195.4.128.60 192.168.178.22 TLSv1l.3 435 Application Data

9 192.168.178.22 195.4.128.60 OpenVPN 90 MessageType: P_ACK V1

10 192.168.178.22 195.4.128.60 TLSvl.3 1506 Change Cipher Spec (reassembled)

11 192.168.178.22 195.4.128.60 OpenVPN 1043 MessageType: P _CONTROL V1, Application Data
12 195.4.128.60 192.168.178.22 OpenVPN 90 MessageType: P_ACK V1

13 192.168.178.22 195.4.128.60  TLSv1l.3 532 Application Data

14 195.4.128.60 192.168.178.22 TLSv1l.3 276 Application Data

15 192.168.178.22 195.4.128.60 OpenVPN 90 MessageType: P_ACK V1
16 195.4.128.60 192.168.178.22 TLSv1l.3 303 Application Data
17 192.168.178.22 195.4.128.60 OpenVPN 90 MessageType: P_ACK V1
18 192.168.178.22 195.4.128.60  TLSv1l.3 117 Application Data
19 195.4.128.60 192.168.178.22 OpenVPN 90 MessageType: P_ACK V1
20 195.4.128.60 192.168.178.22 TLSv1l.3 355 Application Data
21 192.168.178.22 195.4.128.60  OpenVPN 90 MessageType: P_ACK V1

22 192.168.178.22 195.4.128.60 OpenVPN 168 MessageType: P_DATA V2
Listing 2: Verkiirzter Auszug eines Wireshark-Capture beim Aufbau einer OpenVPN-Verbindung (TCP)
via ,Passepartout VPN“ unter macOS (gefiltert nach ,,openvpn®)

Leider wurden die TCP-Pakete aufgrund ihrer Lange segmentiert. Deswegen gehoren in Listing 2
einige Pakete, die separat aufgefithrt wurden, logisch zusammen:

« Pakete 6 und 8 bilden ein OpenVPN-CONTROL_V1-Paket und
+ Pakete 10 und 11 bilden ein OpenVPN-CONTROL_V1-Paket mit TLS-Change-Cipher-Spec.

Die ersten drei Pakete sind der Handshake, der in Abschnitt 3.5 beschrieben ist. Darauf folgt ein
TLS-Handshake, in dem auf ein ,Client Hello“ (Paket 4) vom Client der Server mit einem ,,Server
Hello® (Paket 5) antwortet. Wireshark hat einige Pakete, wie den TLS-Handshake, TLS (,TLSv1.3%)
statt OpenVPN zugeordnet. Tatsachlich ist der TLS-Handshake aber in OpenVPN-Paketen enthalten,
seine Daten sind also in Control-Channel-Paketen gekapselt (vgl. Tabelle 3). Laut dem intern
entwickelten Client ([Firmen-interne Quelle], Bastian Kummer, 2018) werden fiir den TLS-
Handshake die Zertifikate aus der OpenVPN-Konfigurationsdatei verwendet. Theoretisch hétte auch
das ,Client Hello“ (Paket 4) das Acknowledgement des P_CONTROL_HARD RESET SERVER V2
iibernehmen kénnen, da CONTROL_V1-Pakete bis zu vier Acknowledgements enthalten diirfen
(Schwabe, 2016). Was der Server in dem CONTROL_V1-Paket 6 (und Paket 8) tut, ist mir nicht ganz
klar. Eventuell gehort das Paket noch zum ,Server Hello“ von TLS: Denn je nach Ansicht behauptet
Wireshark, dass das Paket 5 zu den anderen beiden gehort, oder eben nicht.
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Laut Schwabe (2016) wird erwartet, dass Control-Channel-Nachrichten kleiner sind als 1250 Byte.
Groflere Nachrichten miissen deshalb auf OpenVPN-Protokoll-Ebene aufgeteilt werden. Control-
Channel-Nachrichten sollen auflerdem mit einem ,NUL"-/0-Byte enden. Jeder TLS-Record soll einer
Nachricht zuzuordnen sein.

3.7. Key-Exchange

Fiir die Beobachtung des weiteren Protokollablaufs war der Wireshark-Capture leider nicht so
hilfreich, wie ich es mir erhofft hatte, denn die folgenden Pakete mit ,Application Data“ und ACK V1
sind verschliisselt und daher nicht aufschlussreich. Gliicklicherweise habe ich weitere sehr knappe
Beschreibungen des OpenVPN-Protokolls gefunden, die erwéhnen, was genau tiber TLS tibertragen
wird (OpenVPN Inc., 2025c; Stipakov & Lichtenheld, 2022). Die Quelle ist aber anscheinend aus
altem Quelltext kopiert, denn es wird dort noch ,Key method 1“ erklért, die im RFC-Entwurf schon
als obsolet markiert ist (Schwabe, 2016).

Tabelle 4 zeigt eine Nachricht zum Austausch der Sitzungsparameter im Klartext.

Tabelle 4: OpenVPN-Nachricht zum Austausch der Sitzungsparameter
(OpenVPN Inc., 2025¢; Stipakov & Lichtenheld, 2022)

Null-Bytes | Key-Method Key-Random Options-String | Username Password Peer Info
4 Byte 1 Byte 48 Byte fiir Pre-Master, String-Linge String-Lénge | String-Lange | String-Lénge
32 Byte fir Random 1, + 2 Byte + 2 Byte + 2 Byte + 2 Byte
32 Byte fir Random 2

Die extra zwei Bytes fiir die Strings in der Nachricht enthalten die Lange des Strings und stehen vor
dem String. Hier ist zu beachten, dass die String-Linge inklusive eines abschlieBenden Null-Bytes zu
berechnen ist. Ist ein String leer, ist die Lange 0 (0x0000) und es werden nur die Lingen-Bytes
geschrieben.

Der Options-String (manchmal auch OCC-String) hat nur noch begrenzten Nutzen in moderneren
Versionen von OpenVPN. Er wurde zur Warnung vor Inkompatibilititen zwischen Client und Server
konzipiert, die mit modernen Implementierungen umgangen werden. Dort werden
Verbindungsparameter dynamisch ausgehandelt (Schwabe, 2016).

Der intern entwickelte Client setzt fiir den Options-String ,v0 UNDEF®.

Peer Info enthélt Informationen, die nach dem Schema ,,IV_<KEY>=<VALUE>\n" aufgebaut sind (die
spitzen Klammern markieren Variablen). Einige Werte miissen unterstiitzt werden, wihrend andere
optional sind (Schwabe, 2016).

Die folgenden Werte miissen laut RFC-Entwurf unterstiitzt sein:

« IV_CIPHERS: Verschliisselungsalgorithmen fir den Data-Channel, separiert mit ,,:
« IV_PROTO: natiirliche Zahl als String, die Zahl wird als Bit-Liste interpretiert

« IV_SSO: Multi-Faktor-Authentifizierung, z.B. via TOTP

Die folgenden anderen Werte werden von der internen Implementierung iibermittelt ([Firmen-

interne Quelle], Bastian Kummer, 2018):

o IV_PLAT: Betriebssystem des Clients

+ IV_VER: OpenVPN-Version des Clients

« IV _NCP: veraltet, ersetzt durch IV CIPHERS; ,2“ bedeutet, dass AES-128-GCM and AES-256-GCM
unterstiitzt werden.

Die IV_PROTO-Bits haben die folgenden Bedeutungen (aus Schwabe (2016) direkt iibernommen), die
zu groflem Teil Bezug nehmen auf die Control-Channel-Nachrichten, die in Abschnitt 3.8 noch
erklart werden:
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« Bit 0: Reserviert, soll 0 sein

« Bit 1: Der Client unterstiitzt den Peer-IDs

« Bit 2: Der Client erwartet eine PUSH REPLY und der Server kann diese Antwort senden, ohne eine
PUSH_REQUEST zu empfangen

« Bit 3: Der Client unterstiitzt den neuen Key-Exchange (Rescorla, 2010)

+ Bit 4: Der Client ist in der Lage, zusatzliche Argumente in einer AUTH_PENDING-Nachricht zu
verarbeiten

« Bit 5: Der Client unterstiitzt die Feature-Aushandlung im P2P-Modus

« Bit 6: Der Client ist in der Lage, die Option ,dns“ zu verarbeiten (veraltet)

« Bit 7: Der Client ist in der Lage, EXIT-Nachrichten zu senden und akzeptiert die Option
sprotocol-flags pushed®

« Bit 8: Der Client kann AUTH_FAILED, TEMP-Nachrichten verarbeiten

+ Bit 9: Der Client kann dynamisches TLS-Crypt (V2) verwenden

« Bit 10: Der Client kann das Epoch-Datenformat verwenden. Dieses Format verwendet das AEAD-
Tag am Ende und verfiigt iber einen 48-Bit-Paketzéhler zusammen mit einer 16-Bit-Schlissel-ID,
die eine 64-Bit-Paket-ID bilden

« Bit 11: Der Client ist in der Lage, die DNS-Nachrichten der Push-Option zu verarbeiten

« Bit 12: Der Client ist in der Lage, PUSH_UPDATE-Nachrichten zu verarbeiten

Der Server antwortet mit einer Nachricht in dhnlichem Format, lasst aber die 48 Byte fiir den Pre-
Master-Key in seiner Antwort weg. Daraus konnen nur die Schliissel fiir den Data-Channel generiert
werden (Stipakov & Lichtenheld, 2022), wobei Schwabe (2016) zusétzlich einen neueren Prozess
beschreibt. Da der alte Prozess in der intern entwickelten Implementierung noch genutzt wird, wird
dieser hier einmal beschrieben:

Aus dem

« Pre-Master-Key,

« ,Random 1“ vom Client und
« ,Random 1“ vom Server

wird ein Master-Secret erzeugt (Key-Derivation). Dazu wird eine eine pseudo-zufillige Funktion
genutzt, die fiir TLS 1.0 definiert wurde. Als weiterer Input dient der String ,,0penVPN master
secret” ([Firmen-interne Quelle], Bastian Kummer, 2018).

Aus diesem

« Master-Secret,

« ,Random 2“ vom Client,
« ,Random 2“ vom Server,
+ Client-Session-ID und

» Server-Session-ID

wird ein Session-Key erzeugt. Dafiir wird dieselbe pseudo-zufillige Funktion wie fiir das Master-
Secret verwendet. Als weiterer Input dient der String ,0penVPN key expansion® ([Firmen-interne
Quelle], Bastian Kummer, 2018).

Dieser ,Data-Channel-Key“ wird zur weiteren Verwendung in vier gleich grofle, je 64 Byte lange
Keys, aufgeteilt ([Firmen-interne Quelle], Bastian Kummer, 2018; Stipakov & Lichtenheld, 2022):
. ,Cipher encrypt key“
« ,HMAC encrypt key“
« ,Cipher decrypt key*
« ,HMAC decrypt key*

wobei ,encrypt” und ,decrypt” von Client-Seite aus beschrieben sind.
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Der neue Prozess zur Key-Derivation, den Schwabe (2016) beschreibt, nutzt den in RFC 5705
(Rescorla, 2010) beschriebenen Prozess, um die Data-Channel-Keys zu erzeugen. Wird dieser neue
Prozess verwendet, sollen Pre-Master, Random 1 und Random 2 zuféllige Bytes enthalten, die aber
nicht genutzt werden.

3.8. Control-Channel-Nachrichten

Nachdem die Schliissel fiir den Data-Channel ausgehandelt sind, folgt die weitere Konfiguration,
wenn dies unterstiitzt wird. Diese Nachrichten sind nicht mehr bit- und byteweise definiert, sondern
nutzen ein Text-basiertes Protokoll (Schwabe, 2016):

Dabei beginnt der Client mit einer PUSH_REQUEST-Nachricht. Auf diese antwortet der Server mit
einer PUSH_REPLY-Nachricht, die kommaseparierte Konfigurationsoptionen enthilt (nach dem
Schema ,,PUSH REPLY,option 1,option 2%). Die Konfigurationsoptionen sind dabei die, die auch in
einer Konfigurations-Datei angegeben werden konnen, wie z. B. DNS-Server, IP-Adressen oder
Gateways, die fiir das VPN auf dem Client konfiguriert werden sollen.

Es gibt noch weitere Nachrichten wie

+ PUSH_UPDATE, um Anderungen an der Konfiguration vorzunehmen,

« AUTH_PENDING, um erforderliche, noch nicht erfolgte Multi-Faktor-Authentifizierung zu
kommunizieren,

+ RESTART, um eine Beendigung der Verbindung mit Neuaufbau zu erbitten,

+ HALT, um eine Beendigung der Verbindung ohne Neuaufbau zu erbitten,

« AUTH_FAILED, um Probleme mit der Authentifizierung zu kommunizieren; diese Probleme kénnen
als temporar markiert sein und sogar eine Dauer vor dem néchsten Versuch enthalten,

« EXIT, um die Beendigung der Verbindung zu kommunizieren,

« CR_RESPONSE, um Challenge-Response-Authentication Base-64-encodiert zu beantworten,

« INFO und INFO_PRE, um fehlende Authentifizierungsparameter zu tibermitteln,

+ ACC, um Nachrichten fiir den App Control Channel auszutauschen.

Diese weiteren Nachrichten werden von dem intern entwickelten Client nicht unterstiitzt ([Firmen-
interne Quelle], Bastian Kummer, 2018). Es ist davon auszugehen, dass ihre Relevanz in der Praxis
gering ist; abgesehen von AUTH_FAILED und AUTH_PENDING, die einen recht offensichtlichen Nutzen
haben.

3.9. Data-Channel

OpenVPN unterstiitzt fiir den Data-Channel mehrere Verschliisselungsalgorithmen. Neben AES in
den Modi ,,GCM® (Galois/Counter Mode) und ,,CBC* (Cipher Block Chaining) mit den géngigen
Schlissellangen von 128, 192 und 256 Bit wird auch der neuere ChaCha20-Poly1305 unterstiitzt
(OpenVPN Inc., 2025d). Dieser zeichnet sich dadurch aus, dass es anders als AES-CBC eine
»2Authenticated Encryption with Associated Data“ (AEAD) ist, wie auch AES-GCM. ChaCha20-
Poly1305 ist aber auf Hardware ohne AES-Hardwarebeschleunigung deutlich schneller als AES
(Schirrmacher, 2016). Des Weiteren wurden frither Algorithmen unterstiitzt, die heute als nicht mehr
sicher gelten.

Tabelle 5 zeigt die Einordnung der Verschliisselungsalgorithmen von OpenVPN Inc.
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Tabelle 5: Einordnung der unterstiitzten Algorithmen fiir den Data-Channel
(OpenVPN Inc., 2025d)

Empfohlene Algorithmen Optionale Algorithmen  Veraltete Algorithmen

AES-256-GCM AES-256-CBC BF-CBC
AES-128-GCM AES-192-CBC DES-CBC
CHACHA20-POLY1305 AES-128-CBC DES-EDE3-CBC
AES-192-GCM DESX-CBC

none (keine Verschliisselung)

Data-Channel-Packets nutzen die Opcodes DATA V1 oder DATA V2, wobei DATA V1-Packets veraltet
sind. Thr Aufbau unterscheidet sich, je nach dem, ob ein AEAD-Algorithmus verwendet wird oder
nicht.

Tabelle 6 zeigt die Struktur der AEAD-Data-Channel-Packets.
Tabelle 6: Aufbau eines DATA_V2-Pakets mit AEAD-Cipher

Peer-ID Packet-ID Payload | Authentication-Tag
3 Byte 8 Byte variabel 16 Byte
nur in DATA V2 Schutz vor verschliisselt
Replay-Attacken

Bei Data-Channel-Packets wird die Key-ID genutzt, die Teil jedes OpenVPN-Packets ist (vgl.
Tabelle 1), um die Session-Keys zu identifizieren.

Die Peer-ID, die in DATA_2-Packets enthalten ist, identifiziert Clients und erlaubt damit den Wechsel
von IP-Adressen und Ports. Durch sie muss eine Verbindung nicht neu aufgebaut werden, sondern
die bestehende Session und damit verbundene Sitzungsparameter kénnen trotz neuer IP-Adresse
oder Port weiter genutzt werden.

Die Packet-ID schiitzt vor Replay-Angriffen und besteht aus zwei Byte Epoch und sechs Byte Epoch
Counter. Sie wird auflerdem fiir den Initialisierungsvektor (auch IV oder Nonce; Kurzwort fiir
sNumber used once”) zur Entschliisselung genutzt.

Der Authentication-Tag kann mit Session-Key und Initialisierungsvektor erzeugt werden, um die
empfangenen Daten auf Integritét (vgl. Definition 2) und Authentizitit (vgl. Definition 4) zu prifen.
Bei DATA_V2-Packets sind Opcode, Key-ID, Peer-ID, Packet-ID und Payload signiert, aber bei
DATA_V1-Packets sind nur Packet-ID und Payload signiert (Schwabe, 2016).

Nicht-AEAD-Data-Channel-Packets sind wie folgt aufgebaut:
Tabelle 7: Aufbau eines DATA_V2-Pakets mit Nicht-AEAD-Cipher

Peer-ID HMAC v Packet-ID Payload

3 Byte ca. 20-32 Byte, 16, 24 oder 32 Byte, 4 Byte variabel
je nach Algorithmus | je nach Algorithmus

nur in DATA V2 verschlisselt, verschliisselt
nur bei AES-CBC

OpenVPN unterstiitzt hier, entgegen dem was OpenVPN Inc. (2025d) behauptet, AES in den Modi
CBC, OFB und CTR (Schwabe, 2016). Davon wird an einigen Stellen aber nur CBC tiberhaupt
erwahnt (OpenVPN Inc., 2025d). Deswegen wird hier vor allem auf den AES-CBC-Modus
eingegangen.
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Der HMAC hat eine Lange, die vom gewahlten Hashing-Algorithmus abhangt. SHA-256
beispielsweise erzeugt einen Hash mit 32 Byte Lange. Andere Hash-Verfahren kénnen aber lingere
Hashes erzeugen, wie z.B. SHA-3 mit bis zu 64 Byte, oder MD5 mit 16 Byte, das aber als unsicher
gilt. Der HMAC wird iiber dem verschliisselten Rest des Pakets erzeugt (IV, ggf. Packet-ID, Payload).
Ist der HMAC inkorrekt, muss das Paket ohne Entschliisselung verworfen werden.

Der IV wird bei CBC pseudo-zufillig gewiahlt. Seine Lange hiangt vom gewahlten
Verschliisselungsalgorithmus ab:

. AES-128: 16 Byte

« AES-192: 24 Byte

« AES-256: 32 Byte

Der CBC-Modus enthalt eine Packet-ID. OFB und CTR nutzen die ersten acht Byte als Packet-ID.

Cipher Negotiation oder Negotiable Crypto Parameters (NCP) erlauben es, den symmetrischen
Verschlisselungsalgorithmus wahrend des Verbindungsaufbaus zwischen Server und Client
auszuhandeln.

3.10. TLS-Auth

TLS-Auth erlaubt es, alle Kontroll-Pakete zu signieren. Dadurch kann der Server simtliche Pakete
ohne eine giiltige Signatur ignorieren. Dieses Feature erlaubt dem Server einen besseren Schutz vor
Denial-of-Service-Angriffen, da Angreifer keine solche Signatur erzeugen kénnen. Ein solcher
Angriff wird in Quarkslab SAS (2017), Kapitel 5.1 demonstriert.

Die HMAC-Signatur wird mithilfe eines ,OpenVPN Static Key V1“ erzeugt. Wird der Hashing-
Algorithmus nicht spezifiziert, wird SHA-1 verwendet (Schwabe, 2016).

Tabelle 8 zeigt die Struktur von TLS-Auth-Paketen. TLS-Auth-Pakete enthalten weitere Felder, die in
den Plaintext-Control-Channel-Paketen nicht enthalten sind (vgl. Tabelle 3):

Tabelle 8: Aufbau eines Control-Channel-Pakets mit TLS-Auth
(Schwabe, 2016)

Eigene HMAC Replay- Anzahl ACKs Peer Paket-ID Daten
Session-ID Packet-ID ACKs Session-ID
8 Byte 16-64 Byte 8 Byte 1 Byte 4 Byte x 8 Byte 4 Byte 0 bis n Byte
Anzahl
ACKs

Die Replay-Packet-ID ist zusammengesetzt aus 4 Byte Paket-ID und 4 Byte Timestamp. Sie werden
allerdings in der umgekehrten Reihenfolge als 64-Bit-Counter genutzt (Schwabe, 2016).

Zur Erzeugung des HMAC wird der statische Key und das Pseudo-Paket in Tabelle 9 genutzt.

Tabelle 9: Pseudo-Paket, mit dem der TLS-Auth-HMAC konstruiert wird
(Schwabe, 2016)

Replay- Opcode & Eigene Anzahl ACKs Peer Paket-ID Daten
Packet-ID Key-ID Session-ID ACKs Session-ID
8 Byte 1 Byte 8 Byte 1 Byte 4 Byte x 8 Byte 4 Byte 0 bis n Byte
Anzahl
ACKs

Sowohl Opcode als auch Key-ID werden im HMAC beriicksichtigt. Auflerdem wechselt die Replay-
Packet-ID ihre Position an den Anfang des Pakets. Der HMAC selbst ist logischerweise nicht in dem

Pseudo-Paket.
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3.11. TLS-Crypt

TLS-Crypt verschliisselt die OpenVPN-Pakete des Control-Channels mit einem statischen Pre-
shared Key.

TLS-Crypt-V2 geht noch einen Schritt weiter: Hier wird der Schliissel aus dem Client-Zertifikat
genutzt, und so die Nutzung unterschiedlicher Schliissel fiir jeden Client ermdglicht.

Beide TLS-Crypt-Modi sind recht aufwendig in ihrer Konstruktion (Schwabe, 2016) und werden von
der internen Implementierung nicht unterstitzt ([Firmen-interne Quelle], Bastian Kummer, 2018).
Aus diesen Griinden wird auf eine detaillierte Erklarung dieses Teils des Protokolls an dieser Stelle
verzichtet.

3.12. Fazit zum OpenVPN-Protokoll

Im Folgenden mochte ich meine Analyse mit einer kurzen Kritik des Protokolls abschlieflen, um auf
die Komplexitat des Protokolls und den unverschliisselten Handshake einzugehen.

3.12.1. Mehr als TLS

Ich halte das OpenVPN-Protokoll fiir komplizierter, als es sein miisste:

Statt die bestehende TLS-Verbindung zu nutzen, um dariiber die Nutzdaten verschliisselt zu
transportieren, wird diese nur fiir den Control-Channel genutzt, um dariiber Nutzer-
Authentifikation abzuwickeln und Sitzungsparameter auszuhandeln. Das ist wahrscheinlich
historisch gewachsen, um UDP tiber den eingebauten Mechanismus fiir Zuverldssigkeit unterstiitzen
zu konnen, aber den Data-Channel nicht zuverlassig machen zu miissen (Schwabe, 2016).

Bei UDP gibt es mit Datagram Transport Layer Security (DTLS) (Rescorla et al., 2022) und Quick
UDP Internet Connections (QUIC) (Iyengar & Thomson, 2021) inzwischen aber offene Standards, die
die Zuverlassigkeit beim Handshake gewéhrleisten und Verbindungen mit TLS absichern kénnen.
swstunnel® bietet beispielsweise ein anderes TLS-basiertes VPN auf TCP-Websockets (Gerard, 2025),
Ferrumgate hat ein auf QUIC aufbauendes VPN-Protokoll entwickelt (Ferrumgate, 2023) und
Fortinet bietet in den eigenen VPN-Produkten einen DTLS-Modus (candawi, 2023).

3.12.2. Fingerprinting

OpenVPN muss wegen des eigenen Mechanismus fiir Zuverlassigkeit die OpenVPN-Verbindung
unverschliisselt initiieren:

Damit weist die Initiierung mit Opcodes, Key-ID, Session-IDs, Packet-IDs und Acknowledgements
Metadaten im Klartext auf. Diese Metadaten unterscheiden sich nicht stark von Handshake zu
Handshake und erzeugen somit ein leicht erkennbares Byte-Pattern, was das Protokoll
identifizierbar macht.

Es eignet sich damit nicht zur Umgehung von Zensur, da Regierungen mit Zugriff auf die
Netzwerkinfrastruktur eines Landes dieses Byte-Pattern nutzen kénnen, um OpenVPN-
Verbindungen zu unterbinden (Xue et al., 2024).

Um abwairtskompatibel zu sein, wird das Problem selbst bei TLS-Crypt nicht komplett behoben und
enthalt weiter einen unverschliisselten Opcode, Key-ID und Session-ID. Der Opcode am Beginn
eines jeden Pakets wird auch bleiben miissen, um die Pakete differenziert behandeln zu kénnen.
Ohne Opcode wire es unmoglich, TLS fiir UDP abzusichern, da der Opcode im Endeffekt fiir die
Initiierung der zuverlassigen OpenVPN-Verbindung erforderlich ist.

TLS, DTLS und QUIC weisen eventuell auch gewisse Byte-Patterns auf; durch ihre stindige oder
wachsende Verwendung wére Fingerprinting allerdings vermutlich erschwert. Damit kénnte ein
VPN-Protokoll das TLS, DTLS oder QUIC nutzt, unter dem anderen Traffic wie HTTPS im Internet
weitgehend unerkannt bleiben.
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3.12.3. Plaintext-Handshake ohne Integrititsnachweis

Neben dem DoS-Angriff auf einen OpenVPN-Server durch einen fehlenden Authentizitdtsnachweis
(Quarkslab SAS, 2017) gibt es noch ein weniger schwerwiegendes Problem im Handshake zur
OpenVPN-Sitzungsinitiierung:

Er verfuigt Giber keine kryptografischen Integrititsmechanismen. Somit ist theoretisch ein Machine-
in-the-Middle-Angriff denkbar, bei dem die OpenVPN-Pakete manipuliert werden. Es ist dabei nicht
moglich, die potenzielle Manipulation dieser Pakete zu erkennen. Dadurch kénnte ein erfolgreicher
Verbindungsaufbau verhindert werden (Denial of Service). Wenn TLS-Auth oder TLS-Crypt
konfiguriert wurden, gibt es dieses Problem nicht, da diese Modi Integrititsmechanismen auch in die
ersten OpenVPN-Pakete integrieren.

3.12.4. Viele Konfigurationsmoglichkeiten

Die vielen Konfigurationsmoglichkeiten erschweren eine sichere und erfolgreiche Konfiguration und
erhohen die Komplexitét der Software. WireGuard geht die entgegengesetzte Richtung, hat sehr
wenige Konfigurationsoptionen und kann in ca. 4000 Zeilen Code implementiert werden (Donenfeld,
2015).

Ein Beispiel fiir die unsichere Konfiguration von OpenVPN ist die Konfigurationsméglichkeit von
unsicheren Verschliisselungsalgorithmen. Die werden zwar nicht empfohlen, sind aber auch nicht
verboten (OpenVPN Inc., 2025d). WireGuard hingegen erlaubt gar keine Konfiguration an der Stelle,
sondern erzwingt ChaCha20-Poly1305.

Die Konfigurabilitat von OpenVPN ist aber auch ein Vorteil, da es beispielsweise die Zuweisung von
IP-Adressen dynamisch iiber DHCP unterstiitzt (Yonan, 2018), was WireGuard nicht erlaubt
(Donenfeld, 2015).

Ein weiterer Vorteil der Konfigurabilitat: Sollte ein konfigurierter Verschliisselungsalgorithmus in
Zukunft gebrochen werden, erlaubt OpenVPN einen Wechsel des Algorithmus, wahrend man bei
WireGuard auf ein Software-Update warten miisste.
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4. Analyse der bestehenden Software

Securepoints OpenVPN-Client-Library kann sowohl als Standalone-Binary kompiliert werden als
auch als Shared-Library. Die Software unterstiitzt verschiedene Betriebssysteme:

« Linux

« Android (wie Linux, aber TUN-Device wird vom Betriebssystem verwaltet)

« 10S

« macOS (als iOS-App, tiber Apples ,Designed for iPad®)

« FreeBSD

+ Windows

Die Software hat eine Abhangigkeit auf OpenSSL fiir TLS im Control-Channel und die
Verschliisselung im Data-Channel.

4.1. Struktur des Quellcodes

Abgesehen von der main. c gibt es zu jeder .c-Datei eine . h-Header-Datei.

libovpn-client und ovpn-client bieten eine Application Programming Interface (API) fir die
Nutzung. ovpn-client enthalt auflerdem den Programm-Loop, der die Verbindung initiiert und
Pakete verarbeitet.

Das Modul options implementiert das Parsen von Konfigurationsdateien. Es definiert das struct
options_s, in dem die geparsten Konfigurationsoptionen gespeichert werden. Fiir TLS-
Verbindungen stellt bio_s_packet_buffer gebufferte I/O-Funktionen bereit und kapselt dabei die
Funktionalitit aus openssl/bio.h. Das Modul buffer enthilt eine eigene Buffer-Implementierung
mit einer festen Grofie von 2048 Byte. Mit dbg werden Logging-Funktionen bereitgestellt, wiahrend
packet_buffer Funktionen zum gebufferten Schreiben und Lesen von Paketen implementiert. Das
Modul random stellt plattformabhéngige, kryptografisch sichere Pseudozufallszahlengeneratoren
bereit. Das Modul ss1 enthélt Funktionen zum Parsen von OpenSSL-Chiffren, Zertifikaten und
Private Keys sowie zur Ver- und Entschliisselung von Paketen. Uber tun wird die Konfiguration
eines TUN-Devices ermdglicht, einschliefSlich DNS-, MTU- und Gateway-Einstellungen. Die Datei
main.c bildet den Einstiegspunkt der Anwendung: Sie parst eine Konfigurationsdatei und startet
anschliefend den VPN-Tunnel.

4.2. Schnittstellen der Bibliothek
Die Bibliothek stellt eine Schnittstelle zum Verbindungsaufbau in C zur Verfiigung, die allerdings
iiber zwei Header-Dateien verteilt ist. Der Sinn hinter dieser Separation erschliefit sich mir nicht.

ovpn-client.h (Listing 3) verfiigt iber Funktionen, die die bisher empfangenen und gesendeten
Bytes zuriickgeben (Zeilen 1 und 2), sowie iiber eine Funktion, die mit einer geparsten OpenVPN-
Konfiguration ein VPN startet (Zeile 3).

Auflerdem gibt es Funktionen, die das VPN wieder beenden (Zeilen 4 und 5), oder pausieren (Zeile
6). Es gibt allerdings keine Funktion, um die pausierte Sitzung wieder zu starten.

long long ovpn_in bytes(void);

long long ovpn out bytes(void);

int ovpn client run(struct options s *opt);
void ovpn client stop(void);

void ovpn client logout(void);

void ovpn _client hibernate(void);

o Ul WN =

Listing 3: Auszug der Schnittstellendefinition aus ovpn-client.h
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libovpn-client.h (Listing 4) nutzt selbst ovpn-client.h, erginzt sie aber, da es eine Funktion
enthalt, die das Verbinden iiber einen String statt iiber ein struct options s erlaubt (Zeile 1). Die
Funktion in Zeile 2 hingegen ruft nur ovpn client stop() auf.

1 int ovpn client connect with string(char *config string);
2 int ovpn client disconnect(void);

Listing 4: Auszug der Schnittstellendefinition aus 1ibovpn-client.h

Eine weitere in den Clients genutzte Schnittstelle ist die Funktionsdefinition fiir Log-Aufrufe (Zeile
1). Diese Funktion kann von Clients implementiert werden, um mit der Funktion in Zeile 2 den
voreingestellten Log-Nachrichten-Handler zu ersetzen. Somit konnen zum Beispiel Nachrichten der

Library in der Datenbank einer Client-Applikation gespeichert werden.
C

1 typedef void (*msg handler t)(int, char *);
2 void msg set handler(msg handler_ t new _msg handler);

Listing 5: Auszug der Schnittstellendefinition aus dbg.h

4.3. Konfiguration

Ein zentraler Bestandteil der bestehenden Software ist der Konfigurations-Parser in options.h und
options.c. Dieser Parser parst die Konfigurations-Datei zu einer Konfiguration vom Typ struct
options s. Um den Parser zu verstehen, muss man zuerst den Aufbau einer OpenVPN-
Konfigurationsdatei verstehen. Die meisten Konfigurationsoptionen lassen sich dabei als einzeiliges
n-Tupel aus Option und Wert (Key-Value-Pair) verstehen.

Beispiele:
« dev tun konfiguriert, welche Art von virtuellem Netzwerkinterface angelegt werden soll.
» tun fir tun-Devices, die auf OSI-Layer 3 (IP) operieren,
» tap fur tap-Devices, die auf OSI-Layer 2 (Ethernet) operieren.
« cipher AES-256-GCM konfiguriert die Verschliisselung des Data-Channels.
» die validen Optionen sind in Tabelle 5 aufgefiihrt.
 auth SHA256 konfiguriert den Hashing-Algorithmus fiir die Authentifizierung im Data-Channel.
« proto tcp kann global fiir alle Server das Protokoll auf Vermittlungs- und Transport-Schicht-
Ebene festlegen.
» Die validen Optionen sind TCP, UDP, TCPv6 und UDPv6, wobei die Grof3-/Kleinschreibung
ignoriert wird und das 'v' in den IPv6-basierten Protokollen optional ist.
« remote janhopp.de 1194 udp konfiguriert einen Server, und auf welchem Port er erreichbar ist.
» Als erster Wert kann sowohl eine IP-Adresse, als auch eine Domain aufgefithrt werden.
» Der zweite Wert ist ein optionaler Port, der Standard-Port fiir OpenVPN ist 1194.
» Der dritte Wert ist optional das Transport-Protokoll, falls es sich von dem iiber proto gesetzten
Wert unterscheidet, oder proto nicht gesetzt ist.
« cert, ca, key und tls-auth haben einen Datei-Pfad als Wert, wenn sie einzeilig sind.
» tls-auth hat dabei die Besonderheit, kein géngiges Key-Format zu verwenden.

Neben den einzeiligen Optionen gibt es auch mehrzeilige Optionen. Mehrzeilige Optionen starten
dabei mit <option> und enden mit </option>. Dies ist niitzlich, um nur eine Konfigurations-Datei
zu haben, denn so lassen sich Zertifikate und Schliissel in die Konfigurations-Datei integrieren. Zu
den hier unterstiitzten mehrzeiligen Optionen zdhlen cert, ca, key und tls-auth.

Zwingend erforderlich laut der validate-Funktion fiir struct options s sind cert, ca, key,
remote, und link-mtu oder tun-mtu, die sich gegenseitig ausschliefSen.
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4.4. Main-Loop

Der Main-Loop des Programms organisiert den Verbindungsaufbau und verhalt sich dabei
vergleichbar mit einem Mealy-Automaten. Die Darstellung dieses Automaten wére allerdings

uniibersichtlich. Der Main-Loop wechselt seinen Zustand, gespeichert als enum

ctrl channel state e ctrl statein struct ovpn ctx s je nach seinem aktuellen Zustand und

dem Opcode des aktuellen Pakets (vgl. Tabelle 2).

Listing 6 zeigt die moglichen Zustédnde des Control-Channels.
#define STATE NO_ INPUT 0x10

1

2

3 enum ctrl channel state e
4 {

5 STATE_INIT = 0x0,
6 STATE_WAIT FOR _HARD RESET = 0x1,

7 STATE _SSL CONNECT = 0x2 | STATE _NO INPUT,

8  STATE SSL CONNECT WANT READ = 0x3,

9 STATE_SSL_GEN_KEY DATA = 0x4 | STATE_NO_ INPUT,
10  STATE_SSL WRITE KEY DATA = 0x5 | STATE_NO INPUT,
11 STATE_SSL WRITE KEY DATA WANT READ = 0x6,

12 STATE_SSL_READ KEY DATA = 0x7,
13 STATE_SSL_ESTABLISHED = 0x8,
14 STATE_SSL_HIBERNATE = 0x9,

15

16 STATE_ANY = 0xa,

17 };

Listing 6: ctrl_channel_state_e-Enum aus ovpn-client.c

Die Zustandsiibergiange sind tiber die Funktionen in der Funktionsmatrix in Listing 7 definiert, das

verwendete Makro und die Funktionsdefinition befinden sich dariiber.

1 #define H(ctrl state, opcode) ((ctrl state << 4) + opcode)
2

3 typedef int (*ovpn_handler fn)(struct ovpn ctx s *, struct ovpn parsed frame s *)

4
5 ovpn_handler fn ctrl handler[512] = {

6 [ H(STATE WAIT FOR HARD RESET, P CONTROL HARD RESET SERVER V2)] =

ovpn_handle _hard reset server,
[ H(STATE_SSL_CONNECT, NOOP)] = ovpn_handle ssl connect,

O 00

’

[ H(STATE_ANY, P_CONTROL_HARD_ RESET SERVER V2)] = ovpn_handle hard reset server,
[ H(STATE SSL ESTABLISHED, P_CONTROL SOFT RESET V1)] = ovpn_handle soft reset,
10 [ H(STATE SSL CONNECT WANT READ, P _CONTROL V1)] = ovpn _handle ssl connect,

11 [ H(STATE SSL_GEN KEY DATA, NOOP)] = ovpn_handle gen ssl key data,

12 [ H(STATE_SSL WRITE KEY DATA, NOOP)] = ovpn_handle ssl key data,

13 [ H(STATE SSL WRITE KEY DATA WANT READ, P_CONTROL V1)] = ovpn handle ssl key data,

14 [ H(STATE_SSL _READ KEY DATA, P_CONTROL V1)] = ovpn_handle ssl key data,

15 [ H(STATE SSL ESTABLISHED, P CONTROL V1)] = ovpn handle ctrl,
16 };

Listing 7: Control-Channel-Funktionsmatrix aus ovpn-client.c (gekiirzt)

Nachdem tiber diese Zustinde eine Verbindung aufgebaut und konfiguriert ist, beginnt der
Datentransfer. Die ans TUN-Device geleiteten, zu sendenden Daten werden verschliisselt, in ein
OpenVPN-Paket gekapselt und tiber den Socket an den Server geschickt. Die vom Socket
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empfangenen OpenVPN-Pakete werden geparst und ihre Nutzdaten entschliisselt und an das TUN-
Device weitergeleitet.

Abbildung 7 stellt die Komponenten und ihr Zusammenspiel in der Software vom Quellcode
abstrahiert dar. Sie zeigt den OpenVPN-Client als System, das IP-Packets an das TUN-Device
empfingt, verschliisselt, mit OpenVPN-Metadaten einpackt und tiber den Socket an den Server
verschickt. In entgegengesetzter Richtung werden OpenVPN-Packets vom Socket empfangen,
entpackt, entschliisselt und die Daten als IP-Packets an das TUN-Device weitergeleitet.

Der Data-Channel erhilt sein Schliisselmaterial vom Control-Channel. Dieser besteht aus einem
Reliability Layer, einer TLS-Session und der Session Negotiation. Der Reliability Layer stellt iiber
Acknowledgements die Zuverlissigkeit sicher, damit eine TLS-Session aufgebaut werden kann. Uber
die TLS-Session werden dann die Sitzungsparameter ausgehandelt und Schliisselmaterial
ausgetauscht, das im Data-Channel zur Ver- und Entschliisselung genutzt wird.

I A
IP-Packets |
A J 1
TUN-Device Control-Channel
A
Session Negotiation
\(\e\is/ - 7}
DatarChannel g
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En-/Decryption TLS-Session
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Abbildung 7: Uberblick der notwendigen Komponenten fiir einen OpenVPN-Client

4.5. Data-Channel

Die statischen Funktionen ovpn link write, ovpn link read und ovpn parse frame in ovpn-
client.c serialisieren und deserialisieren die Pakete, die iber die Verbindung zum Server gesendet
und empfangen werden. Dabei ist ovpn_link write fiir die Serialisierung aber nicht fiir die
Verschlisselung zustindig. Die Parameter sind aber nicht blof3 die zu iibermittelnden Bytes, sondern
auch das struct ovpn_ctx_s, das alle fiir die Sitzung relevanten Daten enthalt. Dabei wird
ovpn_link_write fir die Serialisierung aller verschiedenen Paket-Formate genutzt, die sich im
Aufbau teils stark unterscheiden. Daher ist die Funktion recht verschachtelt. ovpn_link_read ist
dafiir relativ simpel gehalten, da die Serialisierung nach dem Lesen in ovpn_parse_frame erfolgt.

Die kryptografischen Funktionen des Data-Channels unterscheiden sich, je nachdem, ob eine
AEAD-Cipher eingesetzt wird. Die Funktionssignaturen in Listing 8 sind recht lang, da sie fiir viele
Pointer die Lange als weiteren Parameter benédtigen. Das ist bei C notwendig, da Pointer an sich
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keine Lénge besitzen. Neben cipher, key, iv und den Cipher- und Klartextparametern (in und out)
wird ein Funktionspointer iibergeben, der Fehler loggen kann. Bei den AEAD-Funktionen kommen
noch aad (Additional Authenticated Data) und der Authentication-Tag tag hinzu.

C
1 int encrypt data(const EVP_CIPHER *cipher, const void *key, size t key len,
2 const void *iv, size t iv len, void *in, size t in size,
3 void *out, int *out size, void (*err_cb)(char *, ...));
4 int decrypt data(const EVP_CIPHER *cipher, const void *key, size t key len,
5 const void *iv, size t iv len, void *in, size t in size,
6 void *out, int *out size, void (*err_cb)(char *, ...));
7
8 int encrypt data aead(const EVP_CIPHER *cipher, const void *key, size t key len,
9 const void *iv, size t iv len, void *in, size t in len,
10 void *out, int *out len, const void *aad, size t aad len,
11 void *tag, size t *tag len, void (*err_cb)(char *, ...));
12 int decrypt data aead(const EVP_CIPHER *cipher, const void *key, size t key len,
13 const void *iv, size t iv_len, void *in, size t in_len,
14 void *out, int *out len, const void *aad, size t aad len,
15 void *tag, size t tag len, void (*err_cb)(char *, ...))

Listing 8: Funktionssignaturen zur Verschliisselung des Data-Channels aus ss1.h

4.6. Weitere Komponenten
Es gibt noch weitere Komponenten der Software, die nicht zentraler Bestandteil der
Implementierung des OpenVPN-Protokolls, aber dennoch zu erwéhnen sind.

4.6.1. tun-Geriteverwaltung

Um ein VPN erfolgreich auf dem Gerit zu starten, ist ein TUN-Device erforderlich. Dies wird so
konfiguriert, dass die Routen, die iiber das VPN erreichbar sein sollen, auf das TUN-Device zeigen.
Es gibt iiber Makros definierte ,Setter” fiir DNS, Maximum Transmission Unit (MTU) und Gateways
fiir IPv4 und IPv6 sowie Funktionen zum Hinzufiigen von Routen und IP-Adressen zur TUN-Device-
Konfiguration. Mit tun_open() kann ein neues TUN-Device erstellt und die Konfiguration darauf
angewendet werden (Listing 9). tunConfig reset() wird zum Speichermanagement verwendet, da
dies in C mit free() und memset () manuell erfolgen muss.

C
1 #define tunConfig set dns(cfg, dns, cnt) (cfg)->dnsServer = dns, (cfg)->dnsCnt = cnt
2 #define tunConfig set mtu(cfg, mtu value) (cfg)->mtu = mtu value
3 #define tunConfig set remote gateway(cfg, arg) (cfg)->remote gateway = arg
4 #define tunConfig set remote gateway ip6(cfg, arg) (cfg)->remote gateway ip6 = arg
5
6 void tunConfig add route(tunConfig *cfg, char *dst, char *msk, char *router);
7 void tunConfig add address(tunConfig *cfg, char *addr, char *mask);
8 void tunConfig reset(tunConfig *cfg);
9 int tun open(tunConfig *config, tun_ctx s *tun_ ctx);
10 int tun close(tun_ctx s *tun ctx);

Listing 9: Angepasster Auszug aus tun.h

4.6.2. buffer-Verwaltung

buffer besteht aus drei Feldern, die iiber Funktionen manipuliert werden:
« data, eine Array von 2048 Byte,

« pos, die Position in data, von der gelesen werden soll,

+ len, die Lange von lesbaren Daten in data.

Dabei sollen die Funktionen einen sicheren Zugriff erlauben. Leider kam es in der Vergangenheit
aber selbst mit diesen Funktionen zu den eingangs beschriebenen Abstiirzen (vgl. Listing 1).
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ovpn-client.c sowie packet buffer.c und dariiber bio s packet buffer.c verwenden dieses
struct buffer s, um darin Daten fiir die Weiterverarbeitung (z.B. Ver- und Entschliisselung)
zwischenzuspeichern.

4.6.3. Makefile

Die Makefile (Listing 10) konfiguriert den Build der Library. Leider funktioniert sie in diesem
Zustand vor allem auf FreeBSD und Linux, nicht aber unter macOS und Windows. Das liegt an dem
in Zeile 2 konfigurierten Pfad /usr/1lib, da dieser auf macOS und Windows nicht existiert oder
nicht die notwendigen Dateien enthélt. Der Build-Prozess fiir diese Plattformen wird iiber andere
Dateien in den jeweiligen Projekten konfiguriert. Abgesehen davon ist die Konfiguration der
Makefile ein aufwendiger Prozess, so muss z.B. jede neue Header-Datei im Projekt explizit in
HEADERS ergianzt werden. Auflerdem muss selbst der clean-Befehl (Zeilen 20 bis 22), also das
Loschen der Build-Artefakte, explizit definiert werden. Das alles erlaubt zwar eine sehr exakte

Konfiguration des Builds, erfordert jedoch auch viel Fachwissen.

Makefile
OPENSSL_CFLAGS =
OPENSSL _LIBS = -L/usr/lib -lcrypto -1lssl
CFLAGS = -ggdb -Wall -Wextra -Wsign-compare -Werror -std=c99 ${OPENSSL CFLAGS} -fPIC
LDFLAGS = -ggdb -Wall -Wextra -Wsign-compare -Werror -std=c99 ${OPENSSL LIBS} -pthread

O Ul WN -

OBJECTS = ovpn-client.o bio s packet buffer.o packet buffer.o buffer.o ssl.o dbg.o
tun.o random.o options.o contrib/strsep.o

EXEC_OBJECTS = ${OBJECTS} main.o

LIB OBJECTS = ${0BJECTS} libovpn-client.o

O 00

10 HEADERS = bio s packet buffer.h buffer.h dbg.h options.h packet buffer.h random.h
ssl.h tun.h contrib/strsep.h

11

12 ovpn-client: ${EXEC_OBJECTS} ${HEADERS}

13 ${CC} ${EXEC_OBJECTS} -o ovpn-client ${LDFLAGS}

14

15 libovpn-client.so: ${LIB OBJECTS}

16 ${LD} -shared -soname $@.1 -o $@.1.0 ${LIB OBJECTS} ${OPENSSL LIBS}

17 Iln -fs $@.1.0 $@.1

18 In -fs $@.1 $@

19

20 clean:

21 rm -f ${OBJECTS} main.o libovpn-client.o ovpn-client libovpn-client.so*

22 rm -rf doc

Listing 10: Auszug aus der Makefile-Datei der internen OpenVPN-Client-Bibliothek
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5. Planung der Reimplementierung

Vor dem Beginn der Implementierung mussten einige Entscheidungen getroffen werden:
« Welche Teile des Protokolls sollen initial unterstiitzt werden?

« Wie soll die Schnittstelle fiir Clients definiert werden?

« Welche Programmiersprache sollte verwendet werden?

5.1. Anforderungen an die Software

FA 1: Funktionale Anforderung

OpenVPN-Konfiguration einlesen

Die Bibliothek muss das OpenVPN-Konfigurationsformat implementieren und
unterstiitzen, um darauf aufbauend die Verbindung herstellen zu konnen.

FA 2: Funktionale Anforderung

OpenVPN-Handshake unterstiitzen

Die Bibliothek muss den vollstandigen OpenVPN-Handshake-Prozess implementieren und
unterstitzen, um damit die Datentlibertragung auszuhandeln.

FA 3: Funktionale Anforderung

OpenVPN-Daten-Tunneling unterstiitzen

Die Bibliothek muss in der Lage sein, VPN-Nutzdaten uiber einen gesicherten Tunnel zu
Ubertragen.

FA 4: Funktionale Anforderung

Plattformiibergreifende Nutzung erméglichen

Die Bibliothek kann den Einsatz auf verschiedenen Plattformen (z. B. macQOS, Linux,
Android, i0S) erlauben, sollte aber zumindest die Erweiterbarkeit um weitere Plattform-
Unterstltzung erlauben.

FA 5: Funktionale Anforderung

Routing konfigurieren (plattformabhangig)

+ Auf macOS und Linux soll die Bibliothek Routing selbst iibernehmen kénnen.
+ Auf Android und iOS soll Routing durch die Plattform-APIs gesteuert werden.

Es gibt noch eine paar weitere Anforderungen, die aber optional sind. Sie gehen teilweise weit tiber
den Umfang eines Prototypen hinaus und werden hier nur zum Zweck der Vollstdndigkeit erw&hnt.
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FA 6: Funktionale Anforderung

(Optional) Soft-Resets unterstiitzen

Die Bibliothek kann Unterstiitzung fiir OpenVPN-Soft-Resets bereitstellen.

FA 7: Funktionale Anforderung

(Optional) TLS-Auth (Authenticated Control Channel Packets)
Die Bibliothek kann signierte (TLS-Auth) Control-Channel-Pakete unterstiitzen.

FA 8: Funktionale Anforderung

(Optional) TLS-Crypt und TLS-Crypt-V2 (Encrypted Control Channel Packets)

Die Bibliothek kann verschliisselte (TLS-Crypt und TLS-Crypt-V2) Control-Channel-Pakete
unterstitzen.

Abwesend sind hier Anforderungen fiir ovpn client hibernate() (vgl. Listing 6), um die
Verbindung zu pausieren. Dieses Feature ist dazu geeignet, in nativen Clients implementiert zu
werden, statt in einer plattformunabhingigen Bibliothek, da gerade mobile Plattformen dafiir eigene
Mechanismen besitzen. Auflerdem iibersteigt das Feature den Umfang eines Prototypen.

5.2. Anforderungen an die Schnittstelle der Software-Bibliothek

Wegen ihrer Ubersichtlichkeit sind die Funktionssignaturen hier schon in Go angegeben.

SA 1: Schnittstellenanforderung

Connect: Verbindungsaufbau initiieren und Tunnel starten

Parameter:
+ Konfiguration als string

Rickgabewert:
+ ob die Operation erfolgreich war als bool

Funktionssignatur in Go:

func Connect(config string) bool
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SA 2: Schnittstellenanforderung

Disconnect: Verbindungsabbau initiieren und Tunnel stoppen
Parameter: keine erforderlich

Rickgabewert:
+ ob die Operation erfolgreich war als bool

Funktionssignatur in Go:

func Disconnect() bool

SA 3: Schnittstellenanforderung

InBytes: Gibt Information liber empfangene Bytes seit Start der Software

Rickgabewert:
« empfangene Bytes als natiirliche Zahl

Funktionssignatur in Go:

func InBytes() uint64

SA 4: Schnittstellenanforderung

OutBytes: Gibt Information lGber gesendete Bytes seit Start der Software

Riickgabewert:
+ gesendete Bytes als natiirliche Zahl

Funktionssignatur in Go:

func OutBytes() uint64

SA 5: Schnittstellenanforderung

SetLogHandler: Funktion zum Setzen einer Logging-Funktion innerhalb von Apps statt in
Go nativ

Parameter:
+ Funktion, die Log-Level und Log-Nachricht entgegennimmt, und diese loggt

Funktionssignatur in Go:

func SetlLogHandler(logger func(logLevel int, message string))

5.3. Eingrenzung
Zur prototypischen Entwicklung gehéren nur die Features, die zwingend erforderlich sind, um das
OpenVPN-Protokoll in simpelster Form abzubilden.

TLS-Auth, TLS-Crypt oder TLS-Crypt-V2 zéhle ich nicht dazu, da sie zusatzliche Features bieten, die
iiber ein ,Minimum Viable Product® hinausgehen.
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Zur Portabilitat der Software-Bibliothek tragt neben der Wahl der Programmiersprache auch die
Architektur der Software bei. Dazu gilt es, darauf zu achten, Plattform-Abhéngigkeiten bei der
Entwicklung zu erkennen und mit geeigneten Mitteln zu abstrahieren. Das ermdglicht die spatere
Erweiterung um andere Plattformen, die iiber die Entwicklung eines Prototypen hinausgeht.

Da auch die interne Originalimplementierung kein Ethernet-Bridging erlaubt, wird auch hier im
Folgenden nur IP-Packet-Tunneling betrachtet.

5.4. Vergleich von Programmiersprachen

Fir die Reimplementierung der OpenVPN-Library gab es im Betrieb zwei Vorschldge fir die Wahl
der Programmiersprache: Go und Rust. Um die Entscheidung versténdlich darzulegen, werden beide
Sprachen kurz vorgestellt.

5.4.1. Go

Go, auch bekannt als Golang, wurde 2007 bei Google entwickelt und 2009 unter einer Open-Source-
Lizenz veréffentlicht (Donovan & Kernighan, 2016). Ziel der Sprache war es, die Entwicklung
moderner, skalierbarer Software durch eine Kombination aus Einfachheit, Effizienz und starken
Tooling-Mechanismen zu erleichtern (Pike, 2023). Die Motivation hinter der Entwicklung war, dass
Google komplexe Software-Projekte in C++ und Java hatte. Diese hatten lange Compile-Zeiten und
boten fiir die oft eingesetzte Nebenlaufigkeit nur unkomfortable Losungen.

Go ist statisch typisiert, kompiliert und bietet integrierte Unterstiitzung fiir Nebenlaufigkeit iber
sogenannte Goroutines, was sie besonders fiir netzwerk- und servernahe Anwendungen
pradestiniert. Die Syntax ist bewusst minimalistisch gehalten und verzichtet auf komplexe
Sprachfeatures wie klassische Vererbung.

Ein herausragendes Merkmal von Go ist das standardisierte Tooling: Das Kommandozeilenwerkzeug
go iibernimmt nahezu den gesamten Build- und Dependency-Management-Prozess. Dariiber hinaus
unterstiitzt das Tool auch Dokumentation, Testing, Formatting und Linting (Donovan & Kernighan,
2016), was in Programmiersprachen wie C, C++ oder Java iiber separates Tooling erledigt wird.
Abhiangigkeiten werden iiber eine zentrale Datei (go.mod) verwaltet.

Das Paket-Okosystem ist gut etabliert, mit einer Vielzahl an qualitativ hochwertigen Open-Source-
Bibliotheken fiir Bereiche wie Netzwerkkommunikation, Kryptographie und Webentwicklung
(Avelino & contributors, 2025). Gleichzeitig legt das Go-Design Wert auf eine starke
Standardbibliothek, sodass viele Anwendungsfille ohne externe Abhéngigkeiten realisierbar sind
(Donovan & Kernighan, 2016).

5.4.2. Rust

Rust ist eine systemnahe, kompilierte Programmiersprache, die seit 2009 von Mozilla Research
gesponsert und 2015 in Version 1.0 verdffentlicht wurde. Sie wurde mit dem Ziel entwickelt,
Speichersicherheit, Nebenldufigkeit und Performance miteinander zu vereinen, ohne auf Garbage
Collection angewiesen zu sein (Klabnik & Nichols, 2018).

Rust positioniert sich somit als moderne Alternative zu Sprachen wie C und C++, die in
sicherheitskritischen Bereichen (Betriebssysteme, Embedded, Netzwerkinfrastruktur) weit verbreitet
sind, aber bekannte Schwichen im Umgang mit Speicher und Nebenlaufigkeit aufweisen.

Das zentrale Sprachmerkmal von Rust ist das innovative Speichermanagement ohne Garbage
Collector (Klabnik & Nichols, 2018). Statt automatischer Speicherbereinigung basiert Rust auf einem
Ownership-Modell mit Borrowing und Lifetimes. Der sogenannte Borrow-Checker analysiert zur
Compile-Zeit, ob Speicher korrekt genutzt wird und verhindert damit viele typische Fehler wie:

+ Use-after-free
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« Null-Pointer-Dereferences
« Data Races

Dies fiihrt zu hoher Sicherheit und sehr guter Laufzeit-Performanz, allerdings auch zu einer steileren
Lernkurve: Man muss die Konzepte von Ownership und Lifetimes beherrschen, um effizient mit Rust
zu arbeiten.

Rust verfiigt mit cargo iiber ein modernes, integriertes Tooling-System fiir Paketverwaltung, Builds,
Tests und Dokumentation. Aulerdem gibt es ein aktives Okosystem, in dem zahlreiche qualitativ
hochwertige Bibliotheken verfiigbar sind; von kryptografischen Werkzeugen iiber Webserver bis hin
zu Low-Level-Systembibliotheken.

5.4.3. Vergleich der Softwareverwaltung

Beide Sprachen bieten gutes Tooling fiir moderne Softwareentwicklung (Donovan & Kernighan,
2016; Klabnik & Nichols, 2018). Sowohl Go als auch Rust verfiigen tiber eine Konfigurations-Datei
(go.mod bzw. cargo.toml), die deutlich leichtere Konfiguration als CMakeLists.txt oder Makefile
fir C oder C++ ermoglichen.

Beide erlauben die einfache Einbettung von Libraries aus dem Internet.

5.4.4. Vergleich des Speichermanagements

Da die entstehende Library in Zukunft auch auf Smartphones und Laptops mit begrenzten
Speicherressourcen zum Einsatz kommen soll, ist eine Betrachtung des Speichermanagements und
damit der zu erwartenden Speichereffizienz und Performance sinnvoll.

Rust bietet den Vorteil, dass die Binaries keine Laufzeitumgebung fiir Garbage-Collection mitliefern
missen, da das Speichermanagement manuell erfolgt (Klabnik & Nichols, 2018). Das manuelle
Speichermanagement geht allerdings mit einem héheren initialen Entwicklungsaufwand einher.

Go hingegen setzt auf einen Garbage-Collector, was zwar fiir die Laufzeit-Performanz nachteilig ist,
aber auch leichtere Software-Entwicklung erlaubt (Donovan & Kernighan, 2016).

5.4.5. Vergleich der Compile-Zeit
Um moglichst schnell Feedback zu Validitdt des Codes und Verhalten der zu entwickelnden Software
bekommen zu kdnnen, ist ein schneller Compiler wiinschenswert.

Rust ist bekannt dafiir, einen langsamen Compiler zu haben, da der Borrow-Checker komplexe
Analysen durchfithren muss, um die Speichersicherheit der Programme zu verifizieren (The Rust
Project Contributors, 2025b).

Go hingegen wurde mit dem Ziel entwickelt, einen méglichst schnellen Compiler zu erméglichen
(Pike, 2023).

5.4.6. Vergleich der Einbettung in mobile Apps
Da Securepoint mobile Apps entwickelt, ist das Tooling der Programmiersprachen zur Einbettung
von nativen Libraries in die Apps fiir Android und iOS relevant.

Go verfolgt mit gomobile und gobind einen Ansatz, bei dem die API einer Library automatisch aus
Go-Code generiert werden kann. Dieser ist dann im Code fiir Android- oder iOS-Apps aufrufbar
(Google LLC, 2025a). Securepoint hat in einer App bereits Go mit diesem Tooling eingesetzt
([Firmen-interne Quelle], Securepoint GmbH, 2025).

Rust verfolgt zwar einen dhnlichen Ansatz, ist aber manueller in der Umsetzung: Neben C-Headern
miissen relativ komplexe, in Rust geschriebene FFI-Bindings programmiert werden.
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5.4.7. Entscheidung
Aufgrund der begrenzten Zeit fiir eine Bachelorarbeit, der Erfahrung im Team mit Go sowie der zu
erwartenden Lernkurve habe ich entschieden, Go zu verwenden.

Im Bereich der Verwaltung von Software-Abhéngigkeiten sind sich die beiden Sprachen recht
ahnlich.

Das Speichermanagement von Rust ist zwar fiir High-Performance-Anforderungen wiinschenswert,
fir die Nutzung in mobilen Apps hingegen wiirde der zusitzliche Aufwand im Speichermanagement
héchstwahrscheinlich die Entwicklung verzogern. Die schnelleren Compile-Zeiten von Go sind zwar
nicht strikt erforderlich, kénnten aber den Entwicklungsworkflow positiv beeinflussen.

Nicht nur das Tooling von Go zur Einbettung in mobilen Apps ist fiir den potenziellen Einsatz
hilfreich. Auch die Erfahrung im Betrieb mit Go sollte die Integration zusétzlich vereinfachen.

6. Implementierung der Software

In diesem Kapitel wird die technische Umsetzung des OpenVPN-Clients in Go beschrieben. Ziel der
Implementierung ist es, die wesentlichen Funktionen der bestehenden Library schrittweise
nachzubilden und dabei eine saubere und nachvollziehbare Struktur zu schaffen.

Den Anfang macht die Test-Strategie, die zeigt, wie bereits wahrend der Entwicklung durch Unit
Tests sichergestellt wird, dass zentrale Komponenten korrekt funktionieren. Darauf folgt die
Beschreibung der CI-Pipeline, die den automatisierten Test- und Build-Prozess unterstiitzt.

Im weiteren Verlauf wird der Konfigurations-Parser vorgestellt, der fiir das Einlesen und Verarbeiten
der OpenVPN-Konfigurationsdateien zustindig ist. Die Strukturierung der OpenVPN-Pakete bildet
die Grundlage fiir die Kommunikation mit dem Server. Anschlieffend werden die einzelnen Schritte
zur Verbindungsherstellung erlautert: der OpenVPN-Handshake, der TLS-Handshake sowie die
Aushandlung der Sitzungsparameter. Nach erfolgreichem Verbindungsaufbau tibernimmt der Data-
Channel die Ubertragung der Nutzdaten.

Auflerdem werden die Probleme geschildert, die wahrend der Entwicklung der einzelnen
Komponenten aufgetreten sind.

6.1. Test-Strategie

Um eine ziigige und fehlerarme Entwicklung des Prototypen zu erleichtern, habe ich Tests als
zentralen Bestandteil der Entwicklung eingesetzt. Tests erlauben es, grofe Anderungen so
vorzunehmen, dass dabei auftretende Probleme frith erkannt und behoben werden kénnen (Myers et
al,, 2012).

Der aktuelle Fokus liegt auf Unit-Tests, die einzelne Komponenten und Funktionen isoliert testen.
Diese Tests decken zentrale Logik wie Konfigurationsverarbeitung und Paket-Verarbeitung ab.
Durch die frithe Integration von Unit-Tests kann die Korrektheit der Implementierung fortlaufend
iberpriift werden. Dabei ist es gerade in der Prototyping-Phase leicht, die Architektur gut testbar zu
gestalten (Myers et al., 2012).

Langfristig ist geplant, die Testabdeckung durch End-to-End-Tests zu erweitern. Diese sollen
sicherstellen, dass die gesamte Bibliothek korrekt mit einem OpenVPN-Server interagiert und alle
Komponenten zuverléssig zusammenspielen. Wahrend Unit Tests schnelle Riickmeldung bei
Anderungen am Code liefern, bieten End-to-End-Tests zusitzlich eine ganzheitliche Absicherung
gegen Integrationsfehler.

Dieses Vorgehen unterscheidet sich von der bisherigen Software-Losung darin, dass bisher keine in
Software definierten Tests eingesetzt wurden ([Firmen-interne Quelle], Bastian Kummer, 2018).
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6.2. CI-Pipeline

Damit die Software-Tests moglichst oft, aber nicht nur manuell ausgefithrt werden, habe ich eine CI-
Pipeline definiert. Die CI-Pipeline erlaubt eine regelmaflige Kontrolle, da sie nach jedem ,Git-

Push® (The Git Project Contributors, 2025) ausgefiithrt wird. In ihr wird zunachst eine Go-Build-
Umgebung konfiguriert. Danach wird die interne Anforderung gepriift, ob alle Quelltext-Dateien mit
einem Copyright-Hinweis beginnen. Dazu wird Googles addlicense-Tool genutzt. Im Anschluss
wird mit dem Befehl go build gepriift, ob aus dem Code erfolgreich eine Binary kompiliert werden
kann. Nach der Ausfithrung der in Software definierten Tests, deren Ergebnisse gespeichert werden,
wird der Go-Formatter (go fmt) ausgefiihrt, der den Code auf einheitliche Einriickung und andere
Formatierung prift. Zum Schluss wird noch mit golint auf haufige Programmierfehler und die
Einhaltung von Programmier-Konventionen gepriift. Listing 11 zeigt einen Auszug aus der ci.yml-
Datei, die das beschriebene Verhalten konfiguriert:

yaml
1 on: [ push ]
2
3 jobs:
4 check license-build-test-format-lint:
5 runs-on: ubuntu-latest
6 steps:
7 - uses: actions/checkout@v4
8 - name: Setup Go
9 uses: actions/setup-go@v5
10 with:
11 go-version: "1.24.x"
12 - name: Install addlicense
13 run: go install github.com/google/addlicense@latest
14 - name: Check license
15 run: addlicense -check -1 mit -s -c "Securepoint GmbH"
16 - name: Build project
17 run: go build
18 - name: Run project tests
19 run: |
20 set -o pipefail
21 go test ./... -v -json | tee TestResults.json
22 - name: Upload Go test results
23 uses: actions/upload-artifact@v4
24 with:
25 name: Go-Test-Results
26 path: TestResults.json
27 - name: Format Go code
28 run: gofmt -1 .
29 - name: Install golint
30 run: go install golang.org/x/lint/golint@latest
31 - name: Run golint
32 run: golint -set exit status ./...

Listing 11: GitHub-Actions-Skript ci.yml zur Qualitdtsiiberpriifung des Quellcodes

6.3. Schnittstellenimplementierung

Die Implementierung der Schnittstelle war ein anfangliches Unterfangen, da es den Einstiegspunkt
in die Software-Bibliothek definiert. Dieser Einstiegspunkt sowie die anderen Schnittstellen-
Funktionen werden von der main.go-Datei genutzt. Die main.go definiert den Einstiegspunkt in das
Programm und ist der in diesem Projekt genutzte Client fiir die definierte API und die dahinter
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stehende Implementierung. Anders als bei der bisherigen Implementierung ist hier die gesamte
Schnittstelle in einer einzigen Datei definiert (Listing 12).

Connect () nimmt eine OpenVPN-Konfiguration als String entgegen und parst daraus ein struct
Options, das die unterstiitzten Konfigurationsoptionen enthilt. Es wird gepriift, ob die geparsten
Optionen valide sind und dann der Verbindungsaufbau begonnen. Schlégt ein Funktionsaufruf fehl,
wird false zuriickgeben, anderenfalls true. Das kann z.B. beim Verbindungsaufbau passieren.
Disconnect () stoppt den Client. Dabei werden Socket und TUN-Device geschlossen. Schlagt ein
Funktionsaufruf fehl, wird false zuriickgeben, anderenfalls true. Das kann z.B. bei dem Schlieflen
eines Sockets auftreten.

InBytes() gibt die vom UDP- oder TCP-Socket empfangenen Bytes zuriick. OutBytes () gibt die
iiber den UDP- oder TCP-Socket gesendeten Bytes zuriick.

SetLogHandler() setzt eine Funktion als Logger. Die Funktion bekommt ein LogLevel (Debug, Info,
Warn oder Error), sowie eine Log-Nachricht als String tibergeben. Sie muss nicht verwendet werden:
Es gibt einen Logger, der auf stdout schreibt. Uber den LogLevel kann man z.B. Debug-Nachrichten
verwerfen. Um aber zu verhindern, dass es kein Logging gibt, kann hier kein ,nil“-Logger gesetzt

werden.
go
func Connect(config string) bool {
opt, err := options.ParseOptionsFromString(config)
if err !'= nil {
dbg.Errorf("Failed to parse options: %s", err)
return false
} else if lopt.IsValid() {
dbg.Errorf("Invalid options")
return false

}

return ovpnclient.Run(*opt)

}

O oo NO U WN =

[
w N RO

func Disconnect() bool {
return ovpnclient.Stop()

}

S e
N o oA~

func InBytes() uint64 {
return ovpnclient.InBytes()

}

N N = =
= © O

func OutBytes() uint64 {
return ovpnclient.OutBytes()

}

N N NN
u b WN

func SetLogHandler(handler func(level dbg.LoglLevel, message string)) {

26 if handler != nil {

27 dbg.SetMsgHandler (handler)
28 }

29 }

Listing 12: Verkiirzter Auszug aus libovpn-client.go

6.4. Konfigurations-Parser

Der Konfigurations-Parser orientiert sich stark an der internen Originalimplementierung. Die
Konfigurationsdatei wird zeilenweise gelesen; das erste Wort bestimmt, welche Funktion zum Parsen
der restlichen verwendet wird. Eine Ausnahme bilden hier die Zertifikate und Keys, die mehrzeilig
sein konnen, wenn z. B. statt cert <cert> das erste Wort ist. In dem Fall wird der Modus des Parsers
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gewechselt und alle Zeilen von z.B. <cert> bis </cert> in einem String der geparsten Konfiguration
gespeichert. Worauf ich hier verzichtet habe, ist die Validierung der Zertifikate oder das direkte
Parsen in ein Go x509.Certificate. Zertifikatsdateien sind wahrscheinlich fast immer von
Maschinen generiert, weshalb die Validierung nicht so dringlich ist. Die Validierung lie3e sich aber
erganzen, wenn es denn gewiinscht wird.

Ein wesentlicher Unterschied ist, dass Domains fiir remote (Server) aufgelst und alle IP-Adressen
sofort validiert werden. Dazu wird auf die Go-Standard-Library zuriickgegriffen, die Funktionen fiir
diesen Zweck bereitstellt. Das hat den Vorteil dass im restlichen Programm nur valide IP-Adressen
behandelt werden miissen: Eine Fehlerquelle fallt weg.

Ein kleinerer Unterschied ist die Aufteilung in kleinere Komponenten, was sich in modernen
Programmiersprachen wie Go anbietet: options.go enthélt das struct und seine Methoden wie
IsValid, wahrend der Parser in parse.go definiert wird. Damit werden Funktionalititen in kleinere,
besser iiberschaubare Bereiche strukturiert.

Es gibt auBerdem Software-Tests, die den Parser mit verschiedenen Konfigurationen auf korrekte
Funktion tiberpriifen kénnen. Komplexere Subkomponenten werden separat mit eigenen Unit-Tests
geprift, ansonsten wird der gesamte Parser als Einheit getestet. Dieses Vorgehen limitiert den
Implementierungs- und Maintenance-Aufwand fiir die Tests, ohne die komplexeren und somit
fehleranfalligen Funktionen in den Tests zu vernachlassigen.

6.5. Strukturierung der OpenVPN-Pakete

OpenVPN-Pakete haben je nach Verbindungszustand und Inhalt unterschiedliche Strukturen (vgl.
Abschnitt 3). Um Pakete zu verarbeiten, werden sie anhand ihres Opcodes erkannt und zu einem
struct deserialisiert. Zu verschickende Pakete halten ihre Daten in einem struct, auf das eine
Bytes-Methode definiert ist. Diese Methode nutzt die Daten des struct, um daraus ein OpenVPN-
Paket als Byte-Array zu serialisieren. Diese Bytes konnen dann tiber die Verbindung zum Server
verschickt werden.

Listing 13 illustriert ein vom Client zu verschickendes Paket anhand des initialen

CONTROL_HARD RESET CLIENT V2-Pakets. Das struct (Zeilen 1 bis 3) hilt die Daten, in diesem Fall
nur die eigene Session-ID. Die Bytes-Methode serialisiert fiir das HardResetClientV2Packet p ein
Byte-Array. Als erstes werden der Opcode und die Key-ID (hier 0, da es noch keine Keys gibt) in den
Byte-Buffer geschrieben (Zeile 7). Danach werden die eigene Session-ID, die Anzahl von ACKs im
Paket (hier immer 0), sowie die Packet-ID (hier immer 0) in den Buffer geschrieben (Zeilen 8 bis 10).

Es bietet sich auch hier wieder an, auf die Go-Standard-Library zuriickzugreifen. Sie bietet eine
Buffer-Implementierung, die der in der internen Originalimplementierung in C recht dhnlich ist. So
lasst sie sich anstatt einer eigenen Implementierung verwenden, womit der Implementierungs- und
Maintenance-Aufwand reduziert wird. Aulerdem kann man davon ausgehen, dass die offizielle
Implementierung von hoher Qualitit und gut getestet ist, wodurch ihre Verwendung das
Fehlerpotenzial senkt.
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go

type HardResetClientV2Packet struct {

}

10
11
12 }

OwnSessionID SessionID

buf := bytes.Buffer{}
buf.WriteByte(OpcodeKeyIDByte(byte(PControlHardResetClientV2), 0))
buf.Write(p.OwnSessionID.Bytes())

buf.WriteByte(0) // 1 byte for acked packet IDs length
buf.Write([]byte{0, 0, 0, 0}) // 4 bytes for packet ID

return buf.Bytes()

1
2
3
4
5 func (p HardResetClientV2Packet) Bytes() []byte {
6
7
8
9

Listing 13: Definition eines OpenVPN-Hard-Reset-Paket vom Client in Go

Listing 14 zeigt die Implementierung der Antwort auf einen Client-Hard-Reset. Das vom Client
empfangene CONTROL_HARD RESET SERVER_V2-Paket muss zunichst geparst werden. Das wird in
ParseHardResetServerV2Packet implementiert. Die Funktion deserialisiert einen Buffer, indem es

Bytes nach dem erwarteten Aufbau liest und interpretiert. Tritt ein Fehler auf, wird statt eines

HardResetServerV2Packet nur ein error zuriickgegeben. Die Riickgabe in dem Format eines Tupels

aus erwarteter Riickgabe und Error ist dabei typisch fiir Go. Dariiber wird explizites Error-Handling

erzwungen, wie man in Zeile 14 sehen kann. Dort fiithrt ein erkannter Fehler sofort zur Beendigung

der Funktion und die aufrufende Funktion muss den aufgetretenen Fehler behandeln. Tritt kein

Fehler auf, wird am Ende der Funktion ein Pointer auf das in Zeilen 1 bis 7 definierte struct

zuriickgegeben. Dieses struct kann dann genutzt werden. In diesem Fall wird es als Teil des
OpenVPN-Handshakes acknowledged (vgl. Abbildung 6).

1
2
3
4
5
6
7}
8

9

ty

go
pe HardResetServerV2Packet struct {

KeyID uint8

RemoteSessionID *SessionID

AckedPacketIDs []PacketID

OwnSessionID *SessionID

RemotePacketID PacketID

func ParseHardResetServerV2Packet (packet []byte) (*HardResetServerV2Packet,

error) {

10
11
12
13
14
15
16
17
18
19
20
21 }

buffer := bytes.NewBuffer(packet)
// keyID und remoteSessionID dem Buffer entnehmen...
ackedPacketIDsLength, err := buffer.ReadByte()
if err !'= nil {
return nil, err
}
// ackedPacketIDs, ownSessionID und remotePacketID dem Buffer entnehmen
parsed := &HardResetServerV2Packet{
// struct wird mit den geparsten Werten beflillt
}

return parsed, nil

Listing 14: Gekiirzte Definition eines OpenVPN-Hard-Reset-Paket vom Server in Go
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6.6. OpenVPN-Handshake

Der OpenVPN-Handshake wurde in der internen Originalimplementierung mit einer State-Machine
abgebildet. Das hat die Nachvollziehbarkeit im Code leider eher verschlechtert, da Funktionsaufrufe
iiber Zustande und Handler-Matrix (vgl. Listing 6, Listing 7) und nicht explizit erfolgen. Deshalb hat
die Go-Implementierung einen anderen Ansatz verfolgt: Statt iiber Zustande wurde der Kontrollfluss
explizit definiert. Jeder Funktionsaufruf folgt auf den vorangegangen, statt in einem Main-Loop tiber
das weitere Vorgehen zu entscheiden. Dieser Ansatz ist meines Erachtens nach besser lesbar. Es
besteht die Gefahr, dass er nicht so gut skaliert wie der Ansatz mit Funktionsmatrix. Fiir einen
Prototypen ist diese Architektur aber ausreichend.

Listing 15 zeigt den OpenVPN-Handshake in dieser expliziten Implementierung. Der Handshake
wird vom Client initiiert (Zeile 2), wonach auf eine Antwort vom Server gewartet wird (Zeilen 3 und
4). Bei Empfang einer Antwort wird das Paket geparst (Zeile 8), seine Session-ID gespeichert und die
Packet-ID in einer Liste erganzt (Zeilen 12 und 13). Danach wird ein Acknowledgement-Paket fiir
die Server-Antwort verschickt (Zeile 14).

go
1 func (s *Session) Handshake() error {
2  s.SendHardReset()
3 packet := make([]byte, 2048)
4  , err := s.ReaderWriter.Read(packet)
5 if err !'= nil {
6
7
8
9

return err

}
parsed, err := packets.ParseHardResetServerV2Packet (packet)
if err != nil {

10 return err

11 }

12 s.RemoteSessionID = *parsed.RemoteSessionID
13 s.AddUnacked (parsed.RemotePacketID)

14 err = s.SendAck()

15 if err !'= nil {

16 return err
17 }

18 return nil
19 }

Listing 15: Vereinfachte Darstellung der OpenVPN-Handshake-Implementierung in Go

Die Session, die den Handshake durchfiihrt, enthéilt dabei eine conn.0VPNConn (Listing 16), die
net.Conn aus der Go-Standard-Library erweitert. net. Conn stellt Lese- und Schreibmethoden fiir
unter anderem UDP- und TCP-Sockets in Go bereit. conn.0VPNConn kann auf einer UDP- oder TCP-
Verbindung aufbauen. Es abstrahiert das OpenVPN-Framing fiir TCP-Verbindungen, indem es
Pakete mit einem Langen-Préfix versieht (vgl. Tabelle 1). Aulerdem erhebt eine conn.0VPNConn die
Menge der Bytes, die empfangen und gesendet werden. 50
1 type OVPNConn interface {

2 net.Conn

3 GetInBytes() uint64

4 GetOutBytes() uint64

51}

Listing 16: Definition der conn.0VPNConn, die fiir UDP und TCP implementiert wird
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6.7. TLS-Handshake

Bei dem Aufbau der TLS-Session, iiber die der Control-Channel die Verbindungsparameter
austauschen sollte, kam es leider zu Problemen bei der Implementierung.

Zunichst war die Konstruktion der Verbindung eine Herausforderung, die sich aber bewéltigen lief3.
Das Problem bestand darin, dass der TLS-Handshake im OpenVPN-Protokoll in OpenVPN-Pakete
mit einem entsprechenden Header fiir Opcodes und andere Informationen gekapselt werden muss.
Dazu habe ich eine eigene Go net.Conn implementiert, die dieses Verhalten unterstiitzt:
CtrlChannelConn in Listing 17 dient zur Ubertragung von CONTROL_V1-Paketen, und unterstiitzt das
Empfangen und Senden von Acknowledgements in den Paketen. Das struct CtrlChannelConn
implementiert eine conn.0VPNConn, die eine Go net.Conn implementiert (vgl. Listing 16). Auflerdem
wird der Traffic tiber die CtrlChannelConn in Control-Channel-Pakete eingekapselt. Dazu wurden
die Methoden Read und Write iiberschrieben.

go
1 type CtrlChannelConn struct {

2 conn.0QVPNConn

3 session *Session

4}

5

6 func (c *CtrlChannelConn) Read(b []byte) (int, error) {

7 n, err := c.session.ReaderWriter.Read(b)

8 if packets.OpcodeFromByte(b[0]).IsAck() {

9 return n, nil
10 }
11 packet, err := packets.ParseUnauthenticatedControlPacket(b[:n])
12 if err != nil {
13 return 0, err
14 }
15 if packets.OpcodeFromByte(b[0]).IsControl() { // ACKs MUST NOT be acknowledged
16 c.session.AddUnacked(packet.OwnPacketID)
17 err = c.session.SendAck()
18 }

19 copied := copy(b, packet.Payload)

20 return copied, err

21 }

22

23 func (c *CtrlChannelConn) Write(b []lbyte) (int, error) {
24 packet := packets.NewUnauthenticatedControlPacket (

25 0, // keyID

26 c.session.OwnSessionID,

27 c.session.PopUnacked(),

28 c.session.RemoteSessionID,

29 c.session.LastSentPacketID+1,
30 b,

31 )

32 c.session.LastSentPacketID++
33 return c.session.0VPNConn.Write(packet.Bytes())
34 }

Listing 17: Auszug der Implementierung CtrlChannelConn in Go

Dieser Datentyp sollte dann als net.Conn von der TLS-Implementierung der Go-Standard-Library
zum Aufbau einer TLS-Verbindung genutzt werden kénnen:
tls.Client(ctrlChannelConn, tlsConfig)
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Leider hat der TLS-Handshake aber weder iiber TCP noch iiber UDP erfolgreich funktioniert. Es gibt
stattdessen die Fehler ,error: failed to authenticate over TLS: local error: tls: bad
record MAC“ und ,failed to authenticate over TLS: unexpected EOF®, anderenfalls hingt sich
die Verbindung beim Lesen auf.

Ich habe die Vermutung, dass nicht alles Relevante zum TLS-Handshake in Schwabe (2016) steht.
Der Versuch, die Paket-Grofie zu limitieren, hat das Problem nicht behoben. Dieser Workaround
wurde in der internen Originalimplementierung verwendet ([Firmen-interne Quelle], Bastian
Kummer, 2018). Meine Vermutung ist, dass der TLS-Handshake nicht einfach iiber den tls.Client
der Go-Standard-Library ausgefithrt werden kann, auch wenn der Handshake in Control-Channel-
Paketen gekapselt ist. Eventuell konnte uTLS Abhilfe schaffen. uTLS ist ein Fork des crypto/tls-
Pakets der Go-Standard-Library. Es bietet tieferen Zugriff auf die Komponenten, sodass man damit
vielleicht die TLS-Records in den Paketen besser kontrollieren kann (Refraction Networking, 2025).
uTLS findet auch bei dem in Go geschriebenen OpenVPN-Client des Open Observatory of Network
Interference (2025) Verwendung. Dann kénnte man das Verhalten im Kapitel ,,Control message
framing“ von Schwabe (2016) exakt abbilden.

Aufgrund dieser Probleme habe ich die darauf folgenden Komponenten entwickelt, auch wenn sie
sich ohne Control-Channel nicht testen lieflen.

6.8. Aushandlung der Sitzungsparameter

Die Modellierung der Authentisierung (Listing 18) mit Nutzername und Passwort sowie die

Aushandlung der Sitzungsparameter entspricht der Definition in Tabelle 4. Der Options-String ist

dabei aus der Originalimplementierung iibernommen. Hier gibt es wieder die Aufteilung in

Datenhaltung in einem struct und eine Bytes-Methode, mit der die Nachricht serialisiert werden

kann. Aus den Strings werden in EncodeStringBytes Byte-Arrays generiert, die in den ersten zwei

Byte ihre Lange enthalten und mit einem Null-Byte enden.

go

1 type AuthMessage struct {
2 KeyRandom KeyRandom
3 Username string
4 Password string
5 PeerInfo string
6 }

7

8

9

func (authMsg *AuthMessage) Bytes() []lbyte {
buf := bytes.Buffer{}

10 buf.Write(make([]byte, 4))
11 buf.WriteByte(0x02) // "key method2 write"
12 buf.Write(authMsg.KeyRandom.Bytes())
13 buf.Write(packets.EncodeStringBytes("V0 UNDEF")) // options string
14 buf.Write(packets.EncodeStringBytes(authMsg.Username))
15 buf.Write(packets.EncodeStringBytes(authMsg.Password))
16 buf.Write(packets.EncodeStringBytes(authMsg.PeerInfo))
17 return buf.Bytes()
18 }

Listing 18: Auszug aus authmessage.go

Die Peer Info wird dabei analog zur Originalimplementierung in Go erzeugt (Listing 19). Der einzige
Unterschied ist in platform.GetPlatform(). Wihrend die Originalimplementierung den C-
Praprozessor direkt in der Funktion nutzt, wird die Abfrage der Plattform bei Go in
plattformspezifischen Dateien hinterlegt. Damit lasst sich die Plattform-Unterstiitzung nach und

41



nach ausbauen, die unterschiedlichen Implementierungen sind aber in einzelne Dateien getrennt.
Diese werden vom Go-Compiler nach dem Namensschema ,name _plattform. go“ erwartet, in
diesem Beispiel also platform android.go, platform darwin.go (iOS und macOS),

platform freebsd.go, platform linux.go und platform windows.go. %0

1 func PeerInfo(ciphers string) string {

2 return fmt.Sprintf(

3 "IV _PLAT=%s\nIV VER=0.1\nIV PROD=sp-ovpn\nIV_ NCP=2\nIV_ CIPHERS=%s\n",
4 platform.GetPlatform(),

5 ciphers,

6 )

7}

Listing 19: Auszug aus peerinfo.go

Das Parsen der Antwort auf eine AuthMessage erfolgt nach dem Schema wie es in Listing 14
prasentiert ist, nur eben fiir den Inhalt von Tabelle 4. Es wird der darin vom Server genannte
Verschlisselungsalgorithmus fiir den Data-Channel genutzt.

6.9. Data-Channel

Der Data-Channel modelliert das Senden und den Empfang der Pakete. Er ver- und entpackt sie und
ver- und entschliisselt sie. Da die Kapselung mit Bytes-Methoden und Parse-Funktionen bereits
erortert wurden (vgl. Listing 13 und Listing 14), liegt der Fokus im Folgenden auf der
Verschliisselung und der Interaktion des Data-Channels mit dem Betriebssystem.

Um eine moglichst einheitliche Nutzung der verschiedenen Verschliisselungsalgorithmen zu
ermoglichen, habe ich alle unterstiitzten Algorithmen mit dem folgenden struct dargestellt

(Listing 20). Das struct besteht dabei aus dem Namen, unter dem der Verschliisselungsalgorithmus
im OpenVPN-Protokoll bekannt ist (vgl. Tabelle 5), der KeySize und NonceSize, die zur Ver- und
Entschliisselung mit entweder NewAEAD oder NewBlock dienen. Das ist abhangig von der Art des
Algorithmus, der in IsAEAD definiert wird. 50

1 type CipherSpec struct {

2 Name string

3 KeySize int

4 NonceSize int

5 IsAEAD bool

6 NewAEAD func(key []byte) (cipher.AEAD, error) // only for AEAD modes

7 NewBlock func(key []byte) (cipher.Block, error) // only for non-AEAD modes
8 }

Listing 20: Auszug aus ciphers.go

Damit lieflen sich die empfohlenen und optionalen Algorithmen aus Tabelle 5 in einer Map abbilden.
Um die Algorithmen einzusetzen, sind Funktionen mit den folgenden Funktionssignaturen definiert
(Listing 21). Die ersten beiden Zeilen zeigen dabei die Funktionssignaturen der Chiffren, die separate
Authentifizierung benétigen (AES-CBC), wihrend die unteren beiden Funktionen fiir die AEAD-
Chiffren verwendet werden. Diese Funktionen erlauben zusatzlich ,,Additional Authenticated

Data“ (hier aad) und benétigen den ,Authentication Tag® (hier tag), der fir zum Nachweis der
Authentizitit und der Integritit ben6tigt wird. Die Signaturen der Funktionen sind gut vergleichbar
mit denen aus Listing 8:
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go

1 func EncryptBlock(block cipher.Block, iv, input []lbyte) ([lbyte, error)

2 func DecryptBlock(block cipher.Block, iv, input []byte) ([]byte, error)

3

4 func EncryptAEAD(aead cipher.AEAD, iv, plain, aad []lbyte) (cipher, tag []byte, error)
5 func DecryptAEAD(aead cipher.AEAD, iv, cipher, aad, tag []byte) ([lbyte, error)

Listing 21: Funktionssignaturen der Verschliisselungsfunktionen in Go

Bisher wurden bei der Implementierung Control-Channel-Pakete behandelt, oder Data-Channel-
Pakete in ihrer Verarbeitung erklirt. Sockets und net.Conn aus der Go-Standard-Library wurden
erwahnt, nicht aber die TUN-Devices, die Herkunft oder Ziel der IP-Pakete auf Client-Seite sind (vgl.
Abbildung 5, Abbildung 7). Sie bilden die Systemgrenze zwischen Betriebssystem und OpenVPN-
Client-Software. Um TUN-Devices in Go zu verwenden, kann man die Library water nutzen.

water verwaltet TUN- und TAP-Devices fiir Linux, macOS und Windows. Der Vorteil dieser Library
ist, dass sie plattformabhéngigen Code tiber eine einheitliche Programmierschnittstelle bereitstellt
(Gao, 2020). Die interne Library in C hat dies hingegen selbst implementieren miissen. In Listing 22
ist eine verkiirzte Version der TUN-Device-Konfiguration und die dazugehorige Open-Methode
dargestellt, die damit ein TUN-Device 6ffnet. Die Funktionen setMtu, setAddresses und setRoutes
setzen die entsprechenden Werte fiir das TUN-Device mithilfe von Shell-Commands wie route und
ifconfig. Fiir das in Open ungenutzte Feld DNSServers fehlt einfach noch die entsprechende
Konfigurationsfunktion. Da ,interface” in Go ein Keyword der Programmiersprache ist wird das
water.Interface ,ifce“ genannt.

go

1 type Config struct {

2 Mtu uintl6

3 Addresses [Inetip.Prefix

4 Routes [1InetRoute

5 DNSServers [Inetip.Addr

6 }

7

8 func (cfg *Config) Open() (*water.Interface, error) {
9 ifce, err := water.New(water.Config{

10 DeviceType: water.TUN,

11 PlatformSpecificParams: water.PlatformSpecificParams{},
12 1)

13 if err != nil { return nil, err }

14 err = setMtu(ifce.Name(), cfg.Mtu)

15 if err != nil { return nil, err }

16 err = setAddresses(ifce.Name(), cfg.Addresses)

17 if err != nil { return nil, err }

18 err = setRoutes(cfg.Routes)

19 if err != nil { return nil, err }
20 return ifce, nil
21 }

Listing 22: Auszug aus tun.go

Das water.Interface bietet Read- und Write-Methoden, wie eine net.Conn, um Pakete zu
empfangen und zu senden. Die weitere Konfiguration von TUN-Devices unterstiitzt die water-
Bibliothek nicht. Die Konfiguration erfolgt daher tiber Befehle wie ,ifconfig® und ,route® Diese
Befehle sind nicht plattformiibergreifend einheitlich. Der route-Befehl auf Linux funktioniert zum
Beispiel anders als auf macOS: Wahrend Linux IPv4 und IPv6 dort mit ,,-4“ und ,,-6° differenziert,
wird dies unter macOS mit ,,-inet“ und ,-inet6” erreicht. Diese Unterschiede wurden daher
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plattformspezifisch z.B. in tun_linux.go und tun_darwin.go implementiert. Dadurch bleibt die
Software plattformiibergreifend einsetzbar.

Anders als die Desktop-Betriebssysteme erzeugen und verwalten Android und iOS ihre TUN-
Devices selbst. Anwendungen haben iiber Programmierschnittstellen indirekten Zugriff auf sie.
Einerseits ist das sicherer, da es keinen Root-Zugriff oder Rechte zur Erzeugung eines TUN-Devices
fir die Anwendung erfordert, andererseits miissen Clients fiir diese Plattformen besondere,
plattformspezifische Losungen implementieren. Zur Vollendung der Implementierung dieser
OpenVPN-Library wire dieses Feature fiir Securepoint wichtig, es tibersteigt aber den Rahmen
dieser Bachelorarbeit.

7. Vergleich der Implementierungen

Zur Bewertung des im Rahmen dieser Arbeit entwickelten Go-Prototyps muss ein strukturierter
Vergleich mit der C-basierten OpenVPN-Client-Bibliothek vorgenommen werden. Ziel ist es, Starken
und Schwichen der Implementierungen, insbesondere im Hinblick auf Wartbarkeit und Leistung
herauszuarbeiten. Da der Go-Prototyp zum Zeitpunkt der Analyse noch nicht vollstindig
implementiert ist, liegt der Schwerpunkt nicht auf einem Funktionsvergleich oder auf Performance-
Messungen, sondern auf qualitativen Aspekten der Softwareentwicklung.

7.1. Erfilllung der Anforderungen

Die bestehende Implementierung erfillt alle priméren funktionalen Anforderungen. Auch die
optionalen Anforderungen des ,Soft-Reset” (Funktionale Anforderung 6) und , TLS-Auth®
Funktionale Anforderung 7 sind erfillt. Allein ,TLS-Crypt” (Funktionale Anforderung 8) ist nicht
implementiert.

Der Prototyp hingegen ist unvollstindig. Es konnen zwar Konfigurationen und Konfigurations-
Dateien eingelesen werden (Funktionale Anforderung 1), aber schon der Handshake ist nur
unvollstandig implementiert (Funktionale Anforderung 2). Das hat auch die Dateniibertragung tiber
den Client beeinflusst (Funktionale Anforderung 3): Teile der Implementierung sind fertig, sie sind
aber nicht vollstandig, da dort die Integration ohne Funktionale Anforderung 2 nicht moglich war.
Die Umsetzung der plattformspezifischen Features ist zwar nicht vollstandig, aber die Infrastruktur
ist implementiert (Funktionale Anforderung 4). Die Konfiguration der TUN-Devices ist zumindest
fir Linux und macOS moglich (Funktionale Anforderung 5). Die Schnittstellenimplementierung
wurde wie in Abschnitt 5.2 beschrieben umgesetzt (vgl. Listing 12).

7.2. Qualitative Analyse

Ein sinnvoller Vergleich von Software erfordert mehr als einen reinen Funktionsabgleich. Da der
Prototyp nicht fertiggestellt werden konnte, sollen zunéchst Kriterien wie Testbarkeit sowie die
Komplexitit und Struktur des Codes beriicksichtigt werden. Diese Bewertung erfolgt hauptsachlich
anhand qualitativer Einschéatzungen.

7.2.1. Build-Tooling

Sowohl C als auch Go verfiigen iiber schnelle Compiler, es gibt aber dennoch Qualitatsunterschiede
in den Standard-Toolchains der beiden Sprachen (Pike, 2023; The Rust Project Contributors, 2025b).
Diese Unterschiede méchte ich im Folgenden erdrtern.

Go bietet simples und modernes Build-Tooling, was die Verwendung von externen Abhéngigkeiten
tiir beispielsweise Kryptografie oder die Verwendung von TUN-Devices sehr einfach erméglicht. Es
sind auflerdem der Formatter mit go fmt, ein Linter mit go vet und eine Testumgebung mit go test
direkt in dem Compiler integriert, wodurch ihre handische Installation und Konfiguration entfallt.
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Auch ist die go.mod (Listing 23) als Projektverwaltungsdatei iibersichtlich, explizit und funktioniert

unabhingig vom Betriebssystem, anders als die Makefile der C-Bibliothek (vgl. Listing 10):
go

module golang-vpn

go 1.24

github.com/songgao/water v0.0.0-20200317203138-2b4b6d7c09d8
golang.org/x/crypto v0.40.0

1

2

3

4

5 require (
6

7

8 )

9

10 require golang.org/x/sys v0.34.0 // indirect
Listing 23: Komplette go-mod-Datei des Prototyps

Die Abhingigkeiten lassen sich iiber die Kommandozeile mit z.B. go get github.com/songgao/
water hinzufiigen und mit go get -u all auf die neueste Version aktualisieren. Hingegen muss
OpenSSL fiir die C-Bibliothek entweder auf Desktop-Betriebssystemen vorinstalliert sein oder auf
mobilen Plattformen separat kompiliert und in die Apps integriert werden. Dadurch ist jede
Aktualisierung der OpenSSL-Abhingigkeit in den Apps ein manueller Prozess, der Minuten und bis
zu einer Stunde in Anspruch nimmt, je nach dem, wie schnell die OpenSSL-Library kompiliert wird.
Wahrend man aber bei der C-Bibliothek noch OpenSSL-Shared-Libraries zum Betrieb benétigt,
konstruiert der Go-Compiler eine einzelne, alles enthaltende Binary.

Bei der Einbettung der neuen Go-Implementierung in mobile Apps wire zu erwarten, dass dies
leichter ist als mit der bestehenden Lésung: Die Anbindung der Bibliothek an Apps fiir Android und
i0S wird von gomobile fast komplett automatisiert (Google LLC, 2025a) und wurde bei Securepoint
bereits erfolgreich eingesetzt ([Firmen-interne Quelle], Securepoint GmbH, 2025).

7.2.2. Lines of Code

Die Anzahl an Code-Zeilen eines Projekts sind zwar nicht unbedingt eine verlassliche Metrik, aber
dafiir sehr leicht zu erheben. Gerade bei unterschiedlichen Programmiersprachen ist die
Vergleichbarkeit aber nicht unbedingt gegeben. Trotzdem kann die Metrik Aufschluss tiber die
Komplexitit und damit die Wartbarkeit der Software geben, wenn der Unterschied besonders grof3
ist. Dabei ist eine kleine Anzahl Zeilen erstrebenswert, weil tendenziell weniger Fehler auftreten
konnen. Um die in Abbildung 8 gezeigten Werte zu ermitteln, wurde das Tool cloc verwendet, das
mit der Zahlung von Code-Zeilen, Leerzeilen und Kommentarzeilen eine um diese Werte bereinigte
Analyse der Lines of Code erméglicht (Danial, 2025).

neuer Prototyp in Go

Projekt

bestehende Losung in C

0 1000 2000 3000 4000 5000
Programmzeilen

Abbildung 8: Lines of Code in den Projekten, bereinigt um Leer- und Kommentarzeilen

Der Prototyp ist noch nicht fertig implementiert, weshalb er bei dieser Messung einen Vorteil hat.
Deswegen hat er mit 2940 Zeilen eine geringere Anzahl an Zeilen als die bestehende Lésung mit
5210 Zeilen. Erst wenn beide Implementierungen dieselben Features bieten, ist der Vergleich
aussagekraftiger. Der Trend zum jetzigen Zustand ist aber vielversprechend und spricht eher fiir den
Prototypen. Ich wiirde davon ausgehen, dass noch maximal 2000 Zeilen fiir die Unterstiitzung aller
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Features der Originalimplementierung erforderlich sein werden. Der Umfang der bestehenden
Software-Losung ist im Vergleich also auch nicht schlecht.

7.2.3. Vorteile der Go-Standard-Library

Ein Punkt, der fiir den Prototypen spricht, ist die Tatsache, dass deutlich mehr Komponenten von
Software-Abhéangigkeiten wie der Go-Standard-Library implementiert sind. So wurden buffer.c
und buffer.h nicht zu Go portiert, sondern bytes.Buffer aus der Standard-Bibliothek verwendet.
Die interne Implementierung in der C-Bibliothek hingegen ist durch Instabilitit negativ aufgefallen
(vgl. Listing 1 und [Firmen-interne Quelle] (2024)). Auflerdem verfigt die Go-Standard-Library tiber
Funktionen, die Daten wie z.B. IP-Adressen und X.509-Zertifikate validieren konnen, sowie iiber
leicht nutzbare APIs fiir Netzwerkverbindungen, Textverarbeitung und Kryptografie (Donovan &
Kernighan, 2016).

7.2.4. Abstraktionen

Die Methoden in Listing 13 und Listing 14 strukturieren den Code im Prototypen fiir die
verschiedenen OpenVPN-Paket-Typen, wohingegen die bestehende Implementierung mit
ovpn_link write, ovpn_link_read und ovpn_parse_frame alle unterschiedlichen Paket-Typen iiber
die selben Funktionen serialisieren und deserialisieren. Diese Entscheidung resultiert in langen,
unleserlichen Funktionen, die die Wartbarkeit verschlechtern (Khan et al., 2006).

7.2.5. Software-Tests

Ein klarer Vorteil fiir den Prototypen ist die Existenz von Software-Tests. Sie erlauben es,
automatisiert Fehler in Programmen zu finden (Myers et al., 2012). Aktuell sind 105 verschiedene
Test-Cases definiert, der Grof3teil fiir den Konfigurations-Parser und die Serialisierung und
Deserialisierung der OpenVPN-Pakete. Die Code-Coverage, also der Anteil am Programm-Code, der
bei Tests ausgefithrt wird, liegt nach go test ./... -cover bei 74.6% fiir De-/Serialisierung der
Pakete, bei 43.8% fiir den Konfigurations-Parser und fiir Kryptografie bei 56.1%. Manche
Komponenten haben gar keine Tests. Allerdings ist Code-Coverage unter Kritik, da die Zahlen oft
nicht aussagekraftig sind und sich manipulieren lassen (Borenkraout, 2024).

Das Testen von kritischen Komponenten, wie der De-/Serialisierung von Paketen, hilft bei der
Erkennung von z.B. Regressionen (Myers et al., 2012). Die Originalimplementierung verfiigt nicht
uber Software-Tests, wodurch Fehler leichter unentdeckt bleiben konnen und dann erst bei
Ausfithrung auftreten, beispielsweise auf Kundengeriten.

7.3. Grofie der Binary

Da die Libraries unter anderem auf Smartphones eingesetzt werden sollen, sollten sie keine zu
grof3en Binaries produzieren.

Die Binary-Dateien der beiden Clients sind nicht direkt vergleichbar, da Go eine einzelne Datei
erzeugt, wihrend die C-Bibliothek externe Abhéngigkeiten nutzt. libopenvpn-1ib.so selbst ist
287.040 Byte grof3, aber zusammen mit C-Standard-Library libc++ shared.so (1.794.776 Byte),
sowie libcrypto.so (4.260.232 Byte) und libss1l.so (687.520 Byte) von OpenSSL kommt man auf
ca. 7 Megabyte. Die Library des Prototypen, libgolang-vpn.so, ist ca. 5 Megabyte grof3 (4.795.490
Byte). Damit ist die Library des Prototypen tatséichlich kleiner als die der Originalimplementierung,
wenn man ihre Abhéngigkeiten in der Berechnung beriicksichtigt.

Ich finde dieses Ergebnis recht iiberraschend, da die Shared Library des Prototypen eine Runtime fiir
Garbage-Collection enthalten muss. Andererseits kann Go eventuell ungenutzte Funktionen der
Abhiangigkeiten entfernen, wihrend die die Implementierung in C die vollstindigen Shared-
Libraries der Abhangigkeiten benoétigt. Beide Libraries haben vertretbare Grofien, die z.B. das Limit
des Google Play Store von 200 Megabyte nicht iibersteigen (Google LLC, 2025c).
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7.4. Benchmark

Auch wenn mein eigener Prototyp noch nicht einsatzbereit ist, soll in Vorbereitung auf seine
Fertigstellung der Durchsatz anderer Clients gemessen werden. Es wurden der offizielle OpenVPN-
Client v2.6.14 (OpenVPN contributors, 2025) und der intern entwickelte Client ([Firmen-interne
Quelle], Bastian Kummer, 2018) getestet.

Die Testumgebung bestand aus einer Ubuntu-Linux Virtual Machine (VM), die sowohl als
OpenVPN- als auch als iperf3-Server diente. Der jeweilige OpenVPN-Client lief auf dem Host-
Betriebssystem und verband sich zum OpenVPN-Server auf der VM. Die OpenVPN-Verbindung war
dabei iiber UDP und mit AES-256-GCM konfiguriert. Uber diese Verbindung wurden dann jeweils drei
iperf3-Tests auf dem Host-Betriebssystem gestartet. Zusitzlich wurden zwei Baselines erfasst: Eine
direkte Verbindung zu localhost und eine direkte Verbindung zur VM ohne VPN.

Abbildung 9 zeigt den iperf3-Durchsatz iiber alle vier Verbindungen. Die direkte Verbindung zum
localhost (Baseline) erreicht 106 Gbit/s im Durchschnitt von drei Tests. Das ist das praktisch
erreichbare Maximum auf dem System. Die direkte Verbindung zur VM ohne VPN hat einen deutlich
geringeren durchschnittlichen Durchsatz von 3,99 Gbit/s. Allein das virtualisierte VM-Netzwerk
verringert den fiir die VPN-Clients erreichbaren Durchsatz also enorm. Beide Clients erreichen im
Durchschnitt tiber drei iperf3-Tests ca. 375 Mbit/s.

direkt zu localhost

&
—§ direkt zu VM ohne VPN :l
2 iiber den internen Client
()
> {iber den offiziellen Client
0 25000 50000 75000 100000
Durchsatz in Mbit/s

Abbildung 9: iperf3-Benchmark der OpenVPN-Clients im Vergleich mit Baseline-Messungen

Da in Abbildung 9 die Benchmark-Ergebnisse der OpenVPN-Clients nicht so gut erkennbar sind,
folgt noch eine Darstellung ohne die Baselines. Man kann in Abbildung 10 sehen, dass beide
OpenVPN-Clients fast gleich abschneiden, auch wenn die interne Implementierung einen minimalen
Vorsprung (379 Mbit/s) vor dem offiziellen Client hat (373 Mbit/s). Das sind zwar im Vergleich mit
der Baseline zur VM ohne VPN weniger als 10 %, aber immer noch fast das vierfache der Median-
Downloadgeschwindigkeit deutscher Festnetzanschliisse von 101 Mbit/s (Statista GmbH, 2025).

)
=t
—§ tiber den internen Client |
2 {iber den offiziellen Client |
S
0 100 200 300
Durchsatz in Mbit/s

Abbildung 10: iperf3-Benchmark der OpenVPN-Clients ohne Baseline-Messungen

Bei einem Benchmark des Prototypen in Go wire zu erwarten, dass er etwas schlechter performen
wiirde als die beiden in C geschriebenen Clients, da Go-Binaries eine Runtime fiir Garbage-
Collection enthalten, die einen kleinen Performance-Overhead erzeugt.
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8. Fazit

Ausgangspunkt der Arbeit war die Analyse der bestehenden Situation bei Securepoint, bei der
Abstiirze der bestehenden OpenVPN-Bibliothek durch Speicherzugriffsverletzungen, suboptimale
Performance auf bestimmten Plattformen (z.B. i0S), sowie ein hoher Integrationsaufwand und eine
unkomfortable Build-Konfiguration zu wiederkehrenden Problemen fiihrten. Diese
Herausforderungen motivierten die Suche nach einer Alternative zur bestehenden C-basierten
Losung.

Im Rahmen dieser Arbeit wurde das OpenVPN-Protokoll detailliert technisch analysiert. Dabei
wurden sowohl die Struktur einzelner OpenVPN-Pakete als auch der Aufbau von Sessions
umfassend dokumentiert. Im Anschluss wurde die bestehende C-Implementierung untersucht. Dabei
wurde deutlich, dass einige technische Altlasten (z.B. eigene Buffer-Logik und fehlende
Testabdeckung) die Wartbarkeit und Erweiterbarkeit erschweren kénnen. Insbesondere der in C
notwendige manuelle Umgang mit Speicher und die unzureichende Isolation von Plattform-
spezifischem Code stellen erhebliche Risiken dar.

Basierend auf einem fundierten Vergleich moderner Programmiersprachen wurde Go fiir die
Reimplementierung ausgewahlt. Die Entscheidung begriindet sich in der Kombination aus
Speichersicherheit, einfacher Cross-Plattform-Kompatibilitat, guter Tooling-Unterstiitzung und einer
insgesamt reduzierten Komplexitit gegentiber Alternativen wie Rust.

Die Implementierung des Prototyps fokussierte sich auf zentrale Teile des Protokolls, etwa die
Paketstruktur, TLS-Handshake, den Aufbau von Sessions und die Verarbeitung der Data-Channel-
Nachrichten. Die Software wurde mit besonderem Fokus auf Testbarkeit und Trennung von
plattformspezifischen Abhangigkeiten entworfen. Der Einsatz automatisierter Tests wurde dabei von
Anfang an mitgedacht, was die Produktreife in Zukunft verbessern kann.

Auch wenn der vollstindige Funktionsumfang des urspriinglichen Clients aus Zeitgriinden nicht
komplett nachgebildet werden konnte, zeigt der entwickelte Prototyp exemplarisch, dass die
gewihlte Sprache und Architektur prinzipiell geeignet sind, Funktionsparitat mit der bestehenden
Loésung zu erreichen.

Die Ergebnisse dieser Arbeit legen nahe, dass eine vollstindige Migration des OpenVPN-Clients zu
Go technisch machbar und langfristig potenziell vorteilhaft ist. Zukiinftige Arbeiten sollten sich auf
die Vervollstaindigung und Erweiterung des Funktionsumfangs konzentrieren. Auch eine
Performance-Evaluierung der Go-Implementierung wire wiinschenswert.

Sollte die neue Library weiterentwickelt werden, empfiehlt sich ein Security-Audit der Software.
Damit konnten gegebenenfalls Sicherheitsliicken gefunden und geschlossen werden, bevor die
Library in Produkten von Securepoint eingesetzt wird.
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9. Glossar

AES. Advanced Encryption Standard. symmetrisches, Block-basiertes Verschliisselungsverfahren 7

API. Application Programming Interface. Programmierschnittstelle, um mit einem 4, 23, 29, 33, 35, 46
Programm in Software zu interagieren

CI-Pipeline. automatisch ausgefiihrtes Programm zum Testen von Software-Anderungen in der 34, 35
zentralen Code-Verwaltung; CI ist kurz fiir "Continuous Integration”

ChaCha-Verschliisselungsverfahren. symmetrisches, Strom-basiertes Verschliisselungsverfahren 7
DTLS. Datagram Transport Layer Security. TLS tiber unzuverldssige Verbindungen 21
DoS. Denial of Service 8,9, 22
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GNU GPLv2. GNU General Public License Version 2. Copyleft-Lizenz; fordert die Copyleft- 3

Lizenzierung bei Nutzung einer mit ihr lizenzierter Software

HMAC. Hash-based Message Authentication Code. Integritatsbeweismechanismus fiir 8,9,19, 20
Nachrichten tiber unsichere Kanile

HTTP. Hypertext Transfer Protocol
HTTPS. Hypertext Transfer Protocol Secure. HTTP iiber eine TLS-Verbindung 11,21

QUIC. Quick UDP Internet Connections. UDP-basiertes Transportprotokoll, das bessere Performanz 21
als TCP zum Ziel hat

RSA. Rivest-Shamir-Adleman. asymmetrisches Kryptosystem 7
Serialisierung. Ubersetzung von Daten in ein speicher- oder transportfihiges Format 26, 46
Socket. Kommunikationsschnittstelle des Betriebssystems, unter anderem fiir 4,11, 25, 26, 36, 39, 43

Protokolle auf Transportschicht

Software-Test. in Programmcode definierte Prifung, die Fehler eines Programms erkennen 35, 37, 46
kann

TCP. Transmission Control Protocol. zuverléssiges, 10, 11, 12, 14, 15, 21, 36, 39, 41, 50, 51
verbindungsorientiertes Protokoll auf Transportschicht

TLS. Transport Layer Security. Verschliisselungsprotokoll zur sicheren 11, 12, 13, 15, 16, 20, 21
Dateniibertragung iiber unsichere, zuverlassige Netze

TUN-Device. Virtuelle Netzwerkadapter des Betriebssystems 10, 11, 23, 25, 26, 27, 36, 43, 44
UDP. User Datagram Protocol. verbindungsloses Protokoll auf 10, 11, 12, 21, 36, 39, 41, 47, 51
Transportschicht

VM. Virtual Machine. Software-basiertes Computersystem, das auf einem physischen Host-Rechner 47
lauft und sich wie ein eigenstédndiger Computer mit Betriebssystem verhélt

VPN. Virtual Private Network. Privates Netzwerk, das vom Betriebssystem simuliert 3,5, 6,18, 23,47
wird, meist um auf entfernte private Netzwerkressourcen zuzugreifen
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