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Aufgabenstellung
Der IT-Security-Hersteller Securepoint GmbH hat eine eigene OpenVPN-Client-Bibliothek
entwickelt, die in C geschrieben ist. Diese kommt in Securepoints VPN-Clients für Windows,
Android und iOS zum Einsatz. In Stabilitätsberichten der Clients hat sich gezeigt, dass die interne
OpenVPN-Client-Bibliothek eine häufige Ursache für Abstürze war.

Das Ziel dieser Bachelorarbeit ist die prototypische Umsetzung einer portablen Client-Bibliothek für
das OpenVPN-Protokoll. Teil der Arbeit ist auch die Untersuchung der in dieser Hinsicht relevanten
Teile des Protokolls.

Der Prototyp soll eine bessere Speichersicherheit und Laufzeit-Stabilität bieten und potenziell die
intern entwickelte OpenVPN-Client-Bibliothek in C langfristig ersetzen.

Dazu soll:
• eine Anforderungsanalyse an eine solche OpenVPN-Client-Bibliothek erfolgen, indem:

‣ die bestehende Softwarelösung untersucht wird
‣ die Funktionsweise des OpenVPN-Protokolls in relevanten Teilen untersucht wird

• ein Prototyp einer neuen OpenVPN-Client-Bibliothek entwickelt werden
• die Eignung des Prototyps als Alternative zur bestehenden Software bewertet werden
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1. Einleitung
Um zu verstehen, wie die Themenwahl dieser Bachelorarbeit zustande kam, wird im Folgenden die
zu lösende Problemstellung geschildert. Zunächst möchte ich die Ausgangslage beschreiben, dann
die Probleme erläutern und schließlich den Lösungsansatz und dessen Umsetzung zusammenfassen.

1.1. Ausgangslage
Die Securepoint GmbH stellt für ihre Kunden Virtual Private Network (VPN)-Anwendungen für
Android, iOS, macOS und Windows bereit, die das OpenVPN-Protokoll unterstützen (Securepoint
GmbH, 2025). Um das Protokoll nicht auf jeder Platform erneut zu implementieren, greifen diese
Anwendungen auf eine intern entwickelte, portable Software-Bibliothek zurück, die die clientseitige
Logik des OpenVPN-Protokolls implementiert.
Der Grund für die interne Reimplementierung ist, dass die offizielle OpenVPN-Software unter der
GNU General Public License Version 2 (GNU GPLv2) steht (OpenVPN Inc. and contributors, 2025).
Die GNU GPLv2 ist eine Open-Source-Lizenz, unterliegt jedoch dem Copyleft-Prinzip. Das bedeutet,
dass Software, die auf GNU GPLv2-lizenzierte Komponenten nutzt, ebenfalls unter der GPLv2
veröffentlicht werden muss. Securepoints VPN-Clients stehen aber nicht unter einer Copyleft-
Lizenz, weswegen die Verwendung der offiziellen OpenVPN-Software legal nicht möglich ist.
Die interne OpenVPN-Client-Bibliothek ist in der Programmiersprache C geschrieben und
unterstützt einen großen Teil der für Clients relevanten Konfigurationsoptionen ([Firmen-interne
Quelle], Bastian Kummer, 2018).
Die Wahl von C ermöglicht eine performante Implementierung und die Unterstützung aller
notwendigen Plattformen, birgt allerdings auch erhebliche Risiken. Bei C muss die
Speicherverwaltung manuell erfolgen, was ein beträchtliches Fehlerpotenzial birgt: Es kann zu
Speicherlecks oder Sicherheitslücken führen und Zugriffe außerhalb des erlaubten Speicherbereichs
werden nicht erkannt, sondern führen zum Programmabsturz (Devietti et al., 2008; Turner, 2014).

1.2. Probleme
In der Vergangenheit sind verschiedene Probleme im Zusammenhang mit der OpenVPN-Client-
Library aufgetreten, die hier kurz erklärt werden sollen.

1.2.1. Abstürze durch Verletzung der Speicherrechte
Im Sommer 2024 traten einige Abstürze in der Android-App auf, die in der Google Play Console
gemeldet wurden. Dies geschah nach der Einführung des Features tls-auth ([Firmen-interne
Quelle], 2024), welches OpenVPN-Servern das Filtern aller Pakete ohne gültige Signatur erlaubt
(OpenVPN Inc., 2025a). Dort kam es zu einem Speicherzugriff außerhalb des erlaubten
Speicherbereichs in der Funktion buffer_write. Das führte dazu, dass das Android-Betriebssystem
den Prozess des VPN-Clients sofort beendet hat:

[split_config.arm64_v8a.apk!libopenvpn-lib.so] string.h - buffer_write
SIGSEGV

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
pid: 0, tid: 26098 >>> de.securepoint.ms.agent <<<

backtrace:
  #00  pc 0x000000000007f3e0  /apex/com.android.runtime/lib64/bionic/libc.so (memcpy+96)
  #01  pc 0x000000000000f160  /data/app/de.securepoint.ms.agent-
nwypKaqNhfaEftLHuuY2Ag==/split_config.arm64_v8a.apk!libopenvpn-lib.so (buffer_write+60)
(BuildId: 903fa70d9d98011772c6d33dd46e74f683d22e2c)

Listing 1: Backtrace eines Absturzes in buffer_write durch einen Segmentation Fault unter Android
([Firmen-interne Quelle], 2024)
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Modernere Programmiersprachen erlauben viele der in C möglichen Abstürze gar nicht mehr. Sie
vermeiden mit anderen Speichermodellen ganze Kategorien von Fehlern. Rust beispielsweise
validiert alle Speicherreferenzen mit dem Compiler, sodass ihre sichere Nutzung bei Laufzeit des
Programms garantiert werden kann (The Rust Project Contributors, 2025a). Go löst das Problem des
Speichermanagements, indem ein Garbage Collector nachweislich ungenutzte Referenzen erkennt
und ihre Speicherbereiche wieder freigibt (Donovan & Kernighan, 2016). Beide Fälle demonstrieren,
dass moderne Programmiersprachen Speichermanagement vereinfachen und somit auch Fehler
darin zumindest reduzieren können.

1.2.2. Performance-Probleme durch suboptimale Integration
Die Integration der C-Bibliothek in die Clients für verschiedene Plattformen gestaltet sich
aufwendig. Dies führt häufig dazu, dass Entwickler funktionierende, aber schwer nachvollziehbare
und qualitativ nicht optimale Implementierungen beibehalten. So auch in diesem Beispiel:

Vor drei Jahren ist aufgefallen, dass Uploads über die VPN-Verbindung unter iOS deutlich langsamer
waren als auf anderen Plattformen. Die Ursache dieses Fehlers war die Tatsache, dass die OpenVPN-
Library unter iOS nicht direkt mit dem Socket interagiert hat, wie es auf den anderen Plattformen
der Fall ist.
Stattdessen wurde in einem Read-Loop aktiv gewartet, ob es Pakete zu verschicken gab. Wenn es ein
Paket für den Upload gab, wurde es an die C-Bibliothek gereicht, die jedes Paket als Pointer wieder
an die iOS-App zurück übergeben hat. Die Daten des Pointers wurden in einen Apple-Datentyp Data
kopiert (Apple Inc., 2025a). Diese Kopie wurde dann für den Upload über Apples Netzwerk-API in
den Socket geschrieben. ([Firmen-interne Quelle], 2022a; 2022b).

Die Lösung des Problems war die Nutzung der Implementierung für FreeBSD, die für interne
Zwecke bereits unterstützt wurde ([Firmen-interne Quelle], 2022b). Dies war ohne viele
Anpassungen möglich, da Apples XNU-Kernel seine Ursprünge zum Mach-Kernel von der Carnegie
Mellon University und zu FreeBSD zurückverfolgen kann (Apple Inc., 2025b).

Moderne Sprachen bieten für die Integration von Libraries in z. B. Apps für Android und iOS oftmals
Tooling, das diese Bindings automatisch generieren kann. Das erleichtert die Integration und
verhindert Probleme wie das das oben beschriebene. Es gibt beispielsweise gomobile für die
Programmiersprache Go, womit Bindings zu einer Go-Library für die Sprachen der jeweiligen
Plattformen generiert werden können. Für iOS können Objective-C-Bindings erzeugt werden und
für Android Bindings für Java (Google LLC, 2025a).
gomobile wurde bei Securepoint bereits erfolgreich eingesetzt, um eine DNS-over-HTTPS-App für
Android zu realisieren ([Firmen-interne Quelle], Securepoint GmbH, 2025).

1.2.3. Build-Konfiguration und Deklaration von Abhängigkeiten
Es gibt zudem noch ein weiteres Problem: C hat kein Standard-Build-System. Abhängigkeiten
können oft nicht zentral in einer Datei angegeben werden, wie es bei modernen
Programmiersprachen wie Go mit go.mod-Dateien (Google LLC, 2025b) oder Rust mit Cargo.toml-
Dateien (Rust contributors, 2025) der Fall ist.

Es gibt zwar Lösungen mit Makefile oder CMakeLists.txt, allerdings ist deren Konfiguration und
Einsatz meiner Erfahrung nach aufwendiger, da man dort z. B. noch den Compiler und Linker
festlegen muss.
Außerdem ist dort keine Verwaltung von externen versionierten Abhängigkeiten integriert. Es wird
erwartet, dass man weiß, wie man die Abhängigkeiten manuell so installiert, dass sie gefunden und
genutzt werden können. Es werden tendenziell kleinere Abhängigkeiten direkt ins Projekt kopiert,
was dann einen – meines Erachtens nach – komplexeren Update-Prozess nach sich zieht (Ronin,
2016). Wenn man komfortablere Lösungen moderner Programmiersprachen gewohnt ist, sind einem
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diese Lösungen wahrscheinlich zwangsweise suspekt. Die Programmiersprache Go zum Beispiel
wurde dazu entwickelt, Probleme eines C++-Projekts zu lösen, darunter auch die aufwendige
Verwaltung von Software-Abhängigkeiten, die Entwicklern Zeit kostet (Pike, 2023).

1.3. Lösungsansatz
Im Betrieb kam die Idee auf, die OpenVPN-Client-Library in einer speichersicheren
Programmiersprache zu reimplementieren.

Um dieses Unterfangen strukturiert anzugehen, muss:
1. das OpenVPN-Protokoll analysiert werden
2. die bestehende Software-Lösung analysiert und dokumentiert werden
3. die Schnittstelle der aktuell genutzten OpenVPN-Library dokumentiert werden
4. eine geeignete speichersichere Programmiersprache identifiziert werden
5. der Teil des Protokolls, der für einen Client-Prototypen relevant ist, identifiziert werden
6. der relevante Teil für einen Prototypen in der gewählten Programmiersprache

plattformübergreifend (portabel) implementiert werden
7. die bestehende Software-Lösung mit dem erarbeiteten Prototypen verglichen werden, um die

Eignung des Prototypen als Ersatz für die bestehende Lösung zu ermitteln.

Die komplette Implementierung ist im Rahmen einer Bachelorarbeit unrealistisch, aber die
Dokumentation des Protokolls sowie die Implementierung eines teilweise funktionalen Prototyps
scheint in drei Monaten möglich zu sein.

1.4. Umsetzung
Nach einem kurzen Überblick über Kryptografie und VPNs wird das Protokoll gründlich, aber nicht
vollständig beschrieben und Problematiken mit dem Protokoll in einem Fazit erörtert. Danach wird
die bereits implementierte Client-Bibliothek analysiert und relevante Komponenten und
Schnittstellen identifiziert. Es werden die Programmiersprachen Go und Rust auf ihre Eignung zur
Implementierung eines VPN-Clients verglichen und anhand der Vergleichskriterien wird Go
ausgewählt. Anhand der Analysen des Protokolls und der bestehenden Software-Lösung werden
Anforderungen an den Prototypen sowie seine Schnittstellen definiert. Die Implementierung des
Prototyps und die Herausforderungen dabei werden erörtert. Der Prototyp wird aufgrund
technischer Probleme und einem Mangel an Zeit nicht fertiggestellt, implementiert aber schon viele
wichtige Anforderungen. Abschließend wird die bestehende Implementierung mit dem Prototypen
verglichen, wobei neben den funktionalen Anforderungen auch qualitative Aspekte der Software-
Entwicklung berücksichtigt werden.
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2. Überblick
Bevor wir uns VPNs genauer ansehen, ergibt es Sinn, den Begriff kurz zu erörtern. Ferguson &
Huston (1998) haben diesen Begriff wie folgt definiert:

„A VPN is private network constructed within a public network infrastructure […].“
— Ferguson & Huston (1998)

Was in dieser Definition etwas zu kurz kommt, ist das „Virtual“ in Virtual Private Network.
Raymond (1993) definiert „virtual“ als „logical“ oder auch als vom Betriebssystem simuliert. Man
könnte also vielleicht zur Definition von Ferguson & Huston (1998) ergänzen:

Bei VPNs handelt es sich um logische Netze, die vom Betriebssystem simuliert werden.

Es gibt verschiedene Anwendungsfälle, bei denen VPNs zum Einsatz kommen können. Ein häufiges
Szenario für die Verbindung von verschiedenen Netzen ist die Site-to-Site-Verbindung. Eine Site-to-
Site-Verbindung verbindet zwei Netzwerke miteinander. Das ist vor allem bei Unternehmen ein
verbreiteter Einsatz-Modus, um z. B. verschiedene Firmen-Standorte miteinander zu vernetzen. In so
einem Szenario könnte zum Beispiel ein Client im Netz des einen Netzwerks auf einen Server im
Netz eines anderen Standorts zugreifen.

In Abbildung 1 ist eine vereinfachte schematische Darstellung eines Site-to-Site-VPNs dargestellt:

VPN-Tunnel
Client 0

Server 0

VPN-Gateway 0 VPN-Gateway 1

Client 1

Server 1

Internet

Abbildung 1: Site-to-Site-VPN

Wenn man nun einige Mitarbeiter im Homeoffice oder Außendienst hat, sind diese nicht in einem
Netzwerk der Firma. Für solche Fälle gibt es End-to-Site-Verbindungen. Eine End-to-Site-Verbindung
verbindet einen einzelnen Client mit einem Netzwerk (siehe Abbildung 2). Dieses Szenario wird bei
der bestehenden Bibliothek und dem zu entwickelnden Prototypen angenommen.

VPN-Tunnel 0

VPN-Tunnel 1

VPN-Client 0

VPN-Client 1

VPN-Gateway

Server 0

Server 1

Internet

Abbildung 2: End-to-Site-VPN
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2.1. Informationssicherheit in VPNs
Der Einsatz von Kryptografie dient meist einem der folgenden Ziele der Informationssicherheit, die
auf Englisch als „CIA-Triad“ bekannt sind (Stobitzer, 2017):
• Confidentiality (Vertraulichkeit)
• Integrity (Integrität)
• Availability (Verfügbarkeit)

Manchmal wird statt „Availability“ „Authenticity“ (dt. Authentizität) als alternatives Ziel genannt
(Bundesamt für Sicherheit in der Informationstechnik, 2023).

Ve
rtr

au
lic

hk
ei

t Integrität

Authentizität
Abbildung 3: Die Schutzziele der Informationssicherheit nach
Bundesamt für Sicherheit in der Informationstechnik (2023)

2.1.1. Vertraulichkeit

Definition 1: Vertraulichkeit

Vertraulichkeit bedeutet, dass Unbefugten kein Informationsgewinn möglich ist.

Vertraulichkeit kann über Verschlüsselung der Informationen hergestellt werden. Verschlüsselung
kann mit symmetrischer Verschlüsselung umgesetzt werden, wie dem Advanced Encryption
Standard (AES) (National Institute of Standards and Technology, 2001), dem ChaCha-
Verschlüsselungsverfahren (Nir & Langley, 2018) oder mit Public-Key-Verschlüsselung wie der
Rivest-Shamir-Adleman (RSA) Verschlüsselung (Rivest et al., 1978) oder dem Elgamal-
Verschlüsselungsverfahren (Elgamal, 1985).

Public-Key-Kryptografie, auch asymmetrische Kryptografie genannt, unterscheidet sich von der
symmetrischen Kryptografie in der Anzahl der Schlüssel und wie diese Schlüssel eingesetzt werden:

Bei der symmetrischen Kryptografie kommt ein Schlüssel zum Einsatz, den sowohl Sender als auch
Empfänger nutzen, um Informationen zu verschlüsseln und auch wieder zu entschlüsseln. Die
Operation der Kryptografie ist also mit dem selben Schlüssel reversibel.

Bei der asymmetrischen Kryptografie kommt ein Schlüsselpaar zum Einsatz, das aus privatem und
öffentlichem Schlüssel besteht. Das Schlüsselpaar wird mit kryptografischen Verfahren generiert,
sodass der private Schlüssel Nachrichten entschlüsseln kann, die mit dem öffentlichen Schlüssel
verschlüsselt wurden.

Der private Schlüssel muss geheim bleiben, aber der öffentliche Schlüssel kann frei geteilt werden.

Die Eigenschaft, die asymmetrische Kryptografie ausnutzt, ist die Tatsache, dass die Operationen mit
privatem und öffentlichem Schlüssel leicht sind, ohne privaten Schlüssel aber praktisch irreversibel
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sind. Man spricht von einer Falltürfunktion (Rivest et al., 1978), da selbst Supercomputer ausreichend
große Schlüssel niemals ermitteln können (Andrew, 2021).

2.1.2. Integrität

Definition 2: Integrität

Integrität bedeutet, dass Informationsmanipulation von Unbefugten zumindest erkannt
werden kann.

Um die Integrität einer Nachricht zu überprüfen, werden Prüfsummen eingesetzt. Prüfsummen
werden vom Sender erzeugt und dem Empfänger mitgeteilt. Der Empfänger kann aus der Nachricht
eine eigene Prüfsumme erzeugen. Wenn die eigene Prüfsumme mit der des Senders übereinstimmt,
ist die Nachricht mit sehr hoher Wahrscheinlichkeit unverfälscht (Bundesamt für Sicherheit in der
Informationstechnik, o. J.).

Überträgt man nun allerdings Daten über einen öffentlichen Kanal, könnte eine einfach Prüfsumme
von einem Angreifer nach der Manipulation der Nachricht neu erzeugt werden. Daher werden in der
Praxis Hash-based Message Authentication Codes (HMACs) verwendet. HMACs werden nicht nur
mit einer Nachricht, sondern auch einem geheimen Schlüssel erzeugt, den nur Sender und
Empfänger haben. Ein HMAC kann daher von potenziellen Angreifern praktisch nicht neu erzeugt
werden (Krawczyk et al., 1997).

2.1.3. Verfügbarkeit

Definition 3: Verfügbarkeit

Verfügbarkeit bedeutet, dass die korrekte Funktionsweise eines Systems gewährleistet
ist. Andersrum heißt es, dass es nicht möglich ist, das System ohne Befugnis von der
korrekten Funktionsweise abzuhalten.

Verfügbarkeit ist im Kontext von VPNs vor allem in Hinsicht auf Server relevant. Ein Beispiel für die
Verletzung der Verfügbarkeit ist eine erfolgreiche Denial of Service (DoS)-Attacke (Stobitzer, 2017).
Eine solche DoS-Attacke haben Quarkslab SAS (2017) erfolgreich für bestimmte Konfigurationen des
OpenVPN-Protokolls konstruiert.

2.1.4. Authentizität

Definition 4: Authentizität

Authentizität bedeutet, dass die Identität eines Kommunikationspartners überprüfbar und
echt ist.

Authentizität kann kryptografisch über Signaturen gewährleistet werden. Typische Signaturen
bauen auf Public-Key-Kryptografie auf. Damit können in einigen Fällen auch Nachrichten mit dem
eigenen privaten Schlüssel so „signiert“ werden, dass man unter Verwendung des öffentlichen
Schlüssels die Authentizität einer Nachricht beweisen kann.

OpenVPN kann optional HMACs nutzen (bekannt als „TLS-Auth“ oder „HMAC authenticated
control channel packets“), um die Authentizität von Clients schon beim Aufbau der Verbindung zu
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prüfen (Schwabe, 2016). Da der OpenVPN-Server somit alle Nachrichten ohne valide HMAC
verwerfen kann, ist der DoS-Angriff von Quarkslab SAS (2017) so nicht mehr möglich.

2.1.5. Schlüsselaustausch
VPNs stehen wie alle verschlüsselten Verbindungen vor dem Problem des sicheren
Schlüsselaustauschs. Das Problem besteht darin, dass die Kommunikationspartner die
Kommunikation über ein öffentliches, abhörbares Medium wie das Internet aufbauen müssen.

Gängige VPN-Protokolle wie IPSec (Kaufman et al., 2014), WireGuard (Donenfeld, 2015) und
OpenVPN nutzen dabei alle den Diffie-Hellman-Schlüsselaustausch (Schwabe, 2016), (Rescorla &
Dierks, 2008). Der Diffie-Hellman-Schlüsselaustausch erlaubt es, einen Schlüssel über einen
unsicheren Kanal mit einem Kommunikationspartner auszutauschen (Rescorla, 1999).

Der grobe Ablauf ist dabei wie folgt:
1. Es werden öffentliche Parameter mit dem Kommunikationspartner festgelegt.
2. Die öffentlichen Parameter werden mit dem eigenen privaten Schlüssel kryptografisch kombiniert

(was nicht rückgängig zu machen ist).
3. Diese kryptografisch kombinierten Schlüsseldaten werden über den öffentlichen Kanal

ausgetauscht.
4. Die empfangenen Schlüsseldaten des Kommunikationspartners werden mit dem eigenen privaten

Schlüssel kryptografisch kombiniert.
5. Das Ergebnis ist ein geteilter Schlüssel, der dann für symmetrische Verschlüsselung verwendet

werden kann.

2.2. VPN-Protokolle
Es gibt mehrere verbreitete VPN-Protokolle, die heute noch zum Einsatz kommen. Zu den am
häufigsten verwendeten Protokollen zählen IPSec, OpenVPN und WireGuard (Lyons, 2025).

IPSec unterscheidet sich dabei von den anderen beiden insofern, als dass es auf Internet-Protokoll-
Ebene agiert (Frankel & Krishnan, 2011; Kaufman et al., 2014). Mit Hardwarebeschleunigung ist
IPSec eine schnelle und relativ leicht einsetzbare Lösung (Frikin, 2022). Außerdem erfreut sich IPSec
breiter Integration in Betriebssystemen: So ist es in den Linux-Kernel integriert und unter Android,
iOS, macOS und Windows verfügbar (The strongSwan Team, 2025). IPSec hat den Ruf, schwierig zu
konfigurieren zu sein und verschiedene Software-Versionen zu haben, die untereinander nicht
vollständig kompatibel sind (Frikin, 2022).

WireGuard ist ein relativ neues Protokoll, das eine hohe Flexibilität aufweist, obwohl es weniger
Konfigurationsoptionen bietet. Eine Implementierung ist außerdem seit 2020 mit Version 5.6 im
Linux-Kernel (Donenfeld, 2020). Der Datendurchsatz von WireGuard kann in vielen Szenarien mit
IPSec mithalten oder ist sogar schneller (Donenfeld, 2022).

OpenVPN zeichnet sich vor allem durch eine hohe Konfigurabilität aus (Lyons, 2025). Es kann
aufgrund seiner Flexibilität vielseitig eingesetzt werden, zum Beispiel in Unternehmen zur
Vernetzung von Filialen oder für den Zugriff auf interne Netzressourcen durch Mitarbeiter im
Homeoffice. Es ist allerdings nicht besonders schnell (Donenfeld, 2022).

Um hier einen Eindruck der Performance-Charakteristiken zu vermitteln, folgen die Ergebnisse
eines Firmen-internen Benchmarks, bei dem der VPN-Durchsatz von Securepoint Firewalls der G5-
Serie getestet wurde. Dazu wurde ein Site-to-Site-VPN zwischen der jeweiligen G5-Firewall und
einem deutlich leistungsstärkeren Prototypen mit Default-Einstellungen konfiguriert. Im internen
Netz jeder Firewall befanden sich jeweils ein Rechner. Diese Rechner haben mit dem Messungstool
iperf3 den Datendurchsatz über das jeweilige VPN ermittelt ([Firmen-interne Quelle], Mario Rhein,
2025):
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Abbildung 4: Ergebnisse eines Firmen-internen VPN-Benchmarks der G5-Modelle
([Firmen-interne Quelle], Mario Rhein, 2025)

Abbildung 4 zeigt, dass OpenVPN bei den mittelstarken Modellen Black Dwarf Pro, RC100 und
RC200 sehr gut performt. Bei den stärkeren Modellen zeigt hingegen WireGuard die beste
Performance; sowohl IPSec als auch OpenVPN laufen auf RC300S, RC350R, RC400R und RC1000R
nicht einmal halb so gut: Sie bieten ca. 1500 Mbit pro Sekunde Daten-Durchsatz, während
WireGuard auf der RC1000R über 5500 Mbit/s erreicht.
Da die Verschlüsselungsalgorithmen der verschiedenen VPN-Protokolle auf ihren jeweiligen
Standard-Einstellungen waren, könnte eine Angleichung die Vergleichbarkeit verbessern.
WireGuard unterstützt ausschließlich ChaCha20-Poly1305, deshalb würde sich dieser Algorithmus
für einen Benchmark anbieten (Donenfeld, 2015).

2.3. OpenVPN im OSI-Schichten-Modell
OpenVPN nutzt vom Betriebssystem bereitgestellte, virtuelle Netzwerkgeräte. Über diese
Netzwerkgeräte werden die Nutzdaten an das VPN gesendet oder davon empfangen. Je nach
Konfiguration arbeitet OpenVPN dabei entweder auf der Sicherungsschicht mit TAP-Devices oder
der Netzwerkschicht mit TUN-Devices (Yonan, 2018). TAP-Devices verarbeiten Ethernet-Frames,
während TUN-Devices IP-Packets verarbeiten (Krasnyansky et al., 2002).

Die Nutzdaten werden vom Betriebssystem an dieses virtuelle Netzwerkgerät geroutet und von dort
durch OpenVPN entgegengenommen, verschlüsselt und verpackt. Das Ergebnis wird in der Regel
über das Internet übertragen und auf der Gegenseite wieder entpackt, entschlüsselt und über das
dortige virtuelle Netzwerkgerät in das Zielnetzwerk geroutet.

Die Kommunikation zwischen den Endpunkten erfolgt über das Transmission Control Protocol
(TCP) oder das User Datagram Protocol (UDP) (Transport-Schicht). Um die Nutzdaten übertragen zu
können, muss erst eine Verbindung aufgebaut werden. Dazu wird eine Sitzung durch den Client
initiiert, die Verbindungspartner authentifiziert und kryptografisch abgesichert (Sitzungsschicht).
Nach der erfolgreichen Aushandlung der Verbindungsparameter wird diese verschlüsselte
Verbindung für den sicheren Transport der Nutzdaten verwendet (Schwabe, 2016). Da OpenVPN an
sich schon eine Anwendung ist, wird das OpenVPN-Protokoll der Anwendungsschicht zugeordnet.
OpenVPN-Anwendungen transportieren also als Nutzdaten Ethernet-Frames oder IP-Packets, die
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dann selbst als Nutzdaten die Daten der höheren Schichten enthalten, wie etwa das Hypertext
Transfer Protocol Secure (HTTPS).

Die Abbildung 5 visualisiert beispielhaft den Weg eines IP-Packets von einem Client zu einem
Server.

geroutet vom
Betriebssystem

gelesen vom

schreibt verarbeitetes
Paket auf den TCP-Verbindung

wird ausgelesen und
verarbeitet von

schreibt auf das

geroutet ans
Betriebssystem

Client Server

IP-Packet

TUN-Device

OpenVPN-Client

TCP-Socket TCP-Socket

OpenVPN-Server

TUN-Device

IP-Packet

IP-PacketOpenVPN-Header

Abbildung 5: Beispielhafter Weg eines IP-Packets über einen OpenVPN-Tunnel

3. Analyse des OpenVPN-Protokolls
Damit das OpenVPN-Protokoll implementiert werden kann, muss es zunächst verstanden werden.
Das OpenVPN-Protokoll hat sich seit der Einführung stetig weiterentwickelt. Dadurch gibt es viele
Einstellungsmöglichkeiten, die heute nicht mehr empfohlen werden. Dazu gehört der Static-Key-
Mode, bei dem ein Pre-shared Key zur Verschlüsselung genutzt wird. Ohne Session Keys und andere
moderne kryptografische Praktiken ist dieser Modus nicht nur unsicher, sondern auch deprecated
(Schwabe, 2016).

Der empfohlene OpenVPN-Modus ist der Transport Layer Security (TLS)-Mode. OpenVPN im TLS-
Mode unterscheidet grundsätzlich zwischen zwei Channels: Der Control-Channel dient der
Authentifizierung und Aushandlung der Verbindungsparameter, während der Data-Channel die
ausgehandelten Parameter nutzt, um Daten symmetrisch verschlüsselt zu übertragen.
Control-Channel und Data-Channel teilen sich dabei eine Verbindung (über UDP oder TCP) und
werden über Opcodes unterschieden.

3.1. Struktur von OpenVPN-Paketen
OpenVPN-Pakete unterscheiden sich für TCP und UDP in einem Punkt: TCP-Pakete beginnen mit
zwei Bytes, die die Länge des restlichen Pakets beinhalten. Dies ist erforderlich, da bei TCP die
Daten ab einer gewissen Größe segmentiert werden. Überschreiten die zu sendenden Daten die
Maximum Segment Size, werden die Daten in Segmente unterteilt übertragen und müssen beim
Empfänger wieder zusammengesetzt werden (Eddy, 2022). Opcodes befinden sich im ersten Byte (bei
TCP im dritten) eines jeden Pakets in den höherwertigen 5 Bits. Darauf folgen 3 Bits Key-ID
(Schwabe, 2016). Die darauf folgenden Bytes beinhalten die Daten für Control-Channel oder Data-
Channel.
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Tabelle 1 zeigt diesen Aufbau schematisch. In der ersten Zeile ist eine Beschreibung des Paket-
Abschnitts, in der zweiten Zeile die Länge des Abschnitts und in der dritten Zeile sind weitere
Hinweise.

Tabelle 1: Aufbau eines OpenVPN-Pakets

Paket-Länge Opcode Key-ID Daten
2 Byte 5 Bit 3 Bit 0 bis n Byte

nur TCP von Control-Channel
oder Data-Channel

Neben CONTROL-Packets und DATA-Packets gibt es außerdem noch ACK-Packets, die zu den CONTROL-
Packets zählen. Sie dienen dazu, die für TLS erforderliche Zuverlässigkeit des Control-Channels
sicherzustellen, was bei UDP sonst nicht gegeben wäre. Allerdings können auch andere CONTROL-
Packets bis zu vier Acknowledgements beinhalten.

3.2. Opcodes
„Opcode“ steht für „operation code“. Die Opcodes dienen zur Unterscheidung verschiedener
OpenVPN-Pakete. Der Begriff wird öfter für Prozessor-Instruktionen verwendet (Intel Corp., 1973)
und ist in diesem Kontext am ehesten mit TCP Control-Bits vergleichbar (Eddy, 2022). Ähnlich wie
bei TCP gibt es bei OpenVPN zum Beispiel Opcodes, um eine Verbindung zu initiieren und einen
Opcode um Pakete als empfangen zu kommunizieren (Schwabe, 2016).

Die vollständige Liste aller OpenVPN-Opcodes mit ihrem jeweiligen Wert, Namen und
Verwendungszweck sieht wie folgt aus:

Tabelle 2: Übersicht über OpenVPN-Opcodes (Schwabe, 2016)

Wert Opcode Verwendungszweck
1 CONTROL_HARD_RESET_CLIENT_V1 obsolet
2 CONTROL_HARD_RESET_SERVER_V1 obsolet
3 CONTROL_SOFT_RESET_V1 Initiiert erneuten TLS-Handshake bei einer

stehenden Verbindung
4 CONTROL_V1 Kontrollpaket, verkapselt meist TLS-Handshake
5 ACK_V1 Bestätigt Empfang für bis zu 8 Kontrollpakete
6 DATA_V1 Datenpaket für Transport durch das VPN
7 CONTROL_HARD_RESET_CLIENT_V2 Initiierung der Verbindung
8 CONTROL_HARD_RESET_SERVER_V2 Bestätigt Initiierung der Verbindung
9 DATA_V2 Datenpaket mit Peer-ID

10 CONTROL_HARD_RESET_CLIENT_V3 Initiierung der Verbindung mit TLS-Crypt
11 CONTROL_WKC_V1 CONTROL_V1 für TLS-Crypt

Obsolete Opcodes
CONTROL_HARD_RESET_CLIENT_V1 und CONTROL_HARD_RESET_SERVER_V1 waren die Opcodes zum
Verbindungsaufbau mit „TLS Key method 1“. Diese Art des Verbindungsaufbaus wird seit 2020 nicht
mehr unterstützt, da sie nur zur Abwärtskompatibilität für OpenVPN-Clients vor Version 2.0
erforderlich war (Schwabe, 2020). Das Release-Datum von OpenVPN 2.0 war nicht auffindbar.
GitHubs erster Versions-Tag war v2.1_rc1 von November 2006 (OpenVPN Inc. and contributors,
2006). OpenVPN schreibt in der Software-Dokumentation, dass die Version 2.0-beta17 im
November 2004 erschien (OpenVPN Inc., 2025b).
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Da diese Opcodes also seit ungefähr 20 Jahren nur noch dem Zweck der Abwärtskompatibilität
dienen, wird hier auf genauere Ausführungen zur „TLS Key method 1“ verzichtet. Schwabe (2016)
schreibt außerdem, dass diese Opcodes in Zukunft für andere Zwecke wiederverwendet werden
könnten, wenn alle anderen möglichen Opcodes belegt sein sollten.

Opcode CONTROL_SOFT_RESET_V1
Dieser Opcode leitet einen erneuten TLS-Handshake ein. Dies geschieht, sofern nicht anders
konfiguriert, nach einer Stunde.

Opcode CONTROL_V1
Dieser Opcode markiert ein Kontrollpaket. Pakete beinhalten beispielsweise den TLS-Handshake
oder Nutzernamen, Passwort und Schlüsselmaterial, nachdem der TLS-Handshake die Verbindung
erfolgreich abgesichert hat. Ein CONTROL_V1-Packet kann bis zu 4 Acknowledgements beinhalten.

Opcode ACK_V1
Dieser Opcode dient dazu, Kontrollpakete als empfangen an die andere Seite zu kommunizieren. Ein
ACK_V1-Packet kann bis zu 8 Acknowledgements beinhalten.

Opcode DATA_V1
Dieser Opcode markiert Data-Channel-Packets.

Opcode CONTROL_HARD_RESET_CLIENT_V2
Dieser Opcode initiiert den Verbindungsaufbau mit dem Server.

Opcode CONTROL_HARD_RESET_SERVER_V2
Dieser Opcode beantwortet die Verbindungsaufbau-Nachricht des Clients.

Opcode DATA_V2
Dieser Opcode markiert Data-Channel-Packets, die eine zusätzliche Peer-ID von 24 Bit beinhalten.

Opcode CONTROL_HARD_RESET_CLIENT_V3
Dieser Opcode initiiert den Verbindungsaufbau mit dem Server, wenn tls-crypt-v2 konfiguriert ist.

Opcode CONTROL_WKC_V1
Äquivalent zu CONTROL_V1, allerdings nur für tls-crypt-v2. „WKC“, oder WKc steht für „Wrapped
Client Key“.

3.3. Control-Channel-Pakete
Die Initiierung einer OpenVPN-Session (vgl. Abbildung 6) nutzt Control-Channel-Pakete. Ihre
Struktur ist im OpenVPN-RFC-Entwurf von Schwabe (2016) wie folgt definiert:

Tabelle 3: Aufbau eines Control-Channel-Pakets

Eigene Session-ID Anzahl ACKs ACKs Peer Session-ID Paket-ID Daten

8 Byte 1 Byte 4 Byte ×
Anzahl ACKs

8 Byte 4 Byte 0 bis n Byte

nur wenn
Anzahl ACKs > 0

nur wenn
Anzahl ACKs > 0

nicht in ACK_V1 je nach Opcode

Tabelle 3 zeigt in der ersten Zeile den Inhalt des Paket-Abschnitts, in der zweiten Zeile die Länge
und in der dritten Zeile stehen Kommentare, wie zum Beispiel die Ausnahme, dass ACK_V1-Packets
keine Paket-ID enthalten. Der Grund dafür ist, dass ACK_V1-Packets nicht acknowledged werden
dürfen (Schwabe, 2016). Würde man jedes ACK_V1 mit einem ACK_V1 beantworten, wäre man in einer
Endlosschleife aus Acknowledgements gefangen.
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3.4. OpenVPN-Session-Aufbau
Laut Quarkslab SAS (2017) geht der Verbindungsaufbau wie folgt vonstatten:

}}
}}
}
}}
}}

OpenVPN Session Initiation

}}
}}
}}
}

TLS Handshake & Key Negotiation

}
}
}
}
}
}
}

Key Renegotiation Request (Soft Reset)

}}
}}
}
}}
}}

New TLS Handshake & Key Negotiation

Client Server

CONTROL_HARD_RESET_CLIENT_V2

CONTROL_HARD_RESET_SERVER_V2

ACK_V1

TLS Handshake

CONTROL_V1

ACK_V1

DATA_V1 / DATA_V2

CONTROL_SOFT_RESET_V1

CONTROL_SOFT_RESET_V1

ACK_V1

TLS Handshake

CONTROL_V1

ACK_V1

DATA_V1 / DATA_V2

} IP Packet Exchange (Data Tunneling)

} IP Packet Exchange (Data Tunneling)

Abbildung 6: Ablauf einer OpenVPN-Session (Quarkslab SAS, 2017)

3.5. Initiierung der OpenVPN-Session
Die Initiierung der OpenVPN-Session besteht aus einem Drei-Wege-Handschlag, vergleichbar mit
dem von TCP (Quarkslab SAS, 2017), vgl. Abbildung 6.

1. Der Client verschickt ein CONTROL_HARD_RESET_CLIENT_V2.
• 2 Bytes für die Länge des restlichen Pakets (nur bei TCP)
• 5 Bit CONTROL_HARD_RESET_CLIENT_V2 (0x07), gefolgt von 3 Bit Key-ID 0
• 8 Bytes Client-Session-ID (randomisiert)
• 1 Byte für die Anzahl an ACKs, hier immer 0
• 4 Bytes Packet-ID, hier immer 0

2. Der Server antwortet mit CONTROL_HARD_RESET_SERVER_V2.
• 2 Bytes für die Länge des restlichen Pakets (nur bei TCP)
• 5 Bit CONTROL_HARD_RESET_SERVER_V2 (0x08), gefolgt von 3 Bit Key-ID 0
• 8 Bytes Server-Session-ID (randomisiert)
• 1 Byte für die Anzahl an ACKs, hier immer 1 für das CONTROL_HARD_RESET_CLIENT_V2-Packet
• 1 × 4 Bytes ACK für Packet-ID vom CONTROL_HARD_RESET_CLIENT_V2-Packet, hier immer 0
• 8 Bytes Client-Session-ID vom CONTROL_HARD_RESET_CLIENT_V2-Packet
• 4 Bytes Packet-ID, hier immer 0

3. Der Client antwortet mit einem ACK_V1.
• 2 Bytes für die Länge des restlichen Pakets (nur bei TCP)
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• 5 Bit ACK_V1 (0x05), gefolgt von 3 Bit Key-ID 0
• 8 Bytes Client-Session-ID (randomisiert)
• 1 Byte für die Anzahl an ACKs, hier 1 für das Paket vom Server
• 4 Bytes für das Acknowledgement der Packet-ID des CONTROL_HARD_RESET_CLIENT_V2-Packets
• 8 Bytes für die Session-ID des Peers, bekannt aus dem CONTROL_HARD_RESET_CLIENT_V2-Packet

3.6. TLS-Handshake in OpenVPN
Der TLS-Handshake und was darin passiert war in Schwabe (2016) zum Zeitpunkt meiner Recherche
noch nicht beschrieben. Daher habe ich versucht, mit Wireshark nachzuvollziehen, was für
Nachrichten in welchem Format ausgetauscht werden müssen. Ich habe die Ausgabe etwas editiert,
um sie übersichtlicher zu gestalten:

No. Source          Destination    Protocol Length Info
 1  192.168.178.22  195.4.128.60   OpenVPN  82     MessageType: P_CONTROL_HARD_RESET_CLIENT_V2
 2  195.4.128.60    192.168.178.22 OpenVPN  94     MessageType: P_CONTROL_HARD_RESET_SERVER_V2
 3  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
 4  192.168.178.22  195.4.128.60   TLSv1.3  391    Client Hello
 5  195.4.128.60    192.168.178.22 TLSv1.3  1264   Server Hello, Change Cipher Spec,
                                                    Application Data (reassembled)
 6  195.4.128.60    192.168.178.22 OpenVPN  1506   MessageType: P_CONTROL_V1
 7  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
 8  195.4.128.60    192.168.178.22 TLSv1.3  435    Application Data
 9  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
10  192.168.178.22  195.4.128.60   TLSv1.3  1506   Change Cipher Spec (reassembled)
11  192.168.178.22  195.4.128.60   OpenVPN  1043   MessageType: P_CONTROL_V1, Application Data
12  195.4.128.60    192.168.178.22 OpenVPN  90     MessageType: P_ACK_V1
13  192.168.178.22  195.4.128.60   TLSv1.3  532    Application Data
14  195.4.128.60    192.168.178.22 TLSv1.3  276    Application Data
15  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
16  195.4.128.60    192.168.178.22 TLSv1.3  303    Application Data
17  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
18  192.168.178.22  195.4.128.60   TLSv1.3  117    Application Data
19  195.4.128.60    192.168.178.22 OpenVPN  90     MessageType: P_ACK_V1
20  195.4.128.60    192.168.178.22 TLSv1.3  355    Application Data
21  192.168.178.22  195.4.128.60   OpenVPN  90     MessageType: P_ACK_V1
22  192.168.178.22  195.4.128.60   OpenVPN  168    MessageType: P_DATA_V2

Listing 2: Verkürzter Auszug eines Wireshark-Capture beim Aufbau einer OpenVPN-Verbindung (TCP)
via „Passepartout VPN“ unter macOS (gefiltert nach „openvpn“)

Leider wurden die TCP-Pakete aufgrund ihrer Länge segmentiert. Deswegen gehören in Listing 2
einige Pakete, die separat aufgeführt wurden, logisch zusammen:

• Pakete 6 und 8 bilden ein OpenVPN-CONTROL_V1-Paket und
• Pakete 10 und 11 bilden ein OpenVPN-CONTROL_V1-Paket mit TLS-Change-Cipher-Spec.

Die ersten drei Pakete sind der Handshake, der in Abschnitt 3.5 beschrieben ist. Darauf folgt ein
TLS-Handshake, in dem auf ein „Client Hello“ (Paket 4) vom Client der Server mit einem „Server
Hello“ (Paket 5) antwortet. Wireshark hat einige Pakete, wie den TLS-Handshake, TLS („TLSv1.3“)
statt OpenVPN zugeordnet. Tatsächlich ist der TLS-Handshake aber in OpenVPN-Paketen enthalten,
seine Daten sind also in Control-Channel-Paketen gekapselt (vgl. Tabelle 3). Laut dem intern
entwickelten Client ([Firmen-interne Quelle], Bastian Kummer, 2018) werden für den TLS-
Handshake die Zertifikate aus der OpenVPN-Konfigurationsdatei verwendet. Theoretisch hätte auch
das „Client Hello“ (Paket 4) das Acknowledgement des P_CONTROL_HARD_RESET_SERVER_V2
übernehmen können, da CONTROL_V1-Pakete bis zu vier Acknowledgements enthalten dürfen
(Schwabe, 2016). Was der Server in dem CONTROL_V1-Paket 6 (und Paket 8) tut, ist mir nicht ganz
klar. Eventuell gehört das Paket noch zum „Server Hello“ von TLS: Denn je nach Ansicht behauptet
Wireshark, dass das Paket 5 zu den anderen beiden gehört, oder eben nicht.
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Laut Schwabe (2016) wird erwartet, dass Control-Channel-Nachrichten kleiner sind als 1250 Byte.
Größere Nachrichten müssen deshalb auf OpenVPN-Protokoll-Ebene aufgeteilt werden. Control-
Channel-Nachrichten sollen außerdem mit einem „NUL“-/0-Byte enden. Jeder TLS-Record soll einer
Nachricht zuzuordnen sein.

3.7. Key-Exchange
Für die Beobachtung des weiteren Protokollablaufs war der Wireshark-Capture leider nicht so
hilfreich, wie ich es mir erhofft hatte, denn die folgenden Pakete mit „Application Data“ und ACK_V1
sind verschlüsselt und daher nicht aufschlussreich. Glücklicherweise habe ich weitere sehr knappe
Beschreibungen des OpenVPN-Protokolls gefunden, die erwähnen, was genau über TLS übertragen
wird (OpenVPN Inc., 2025c; Stipakov & Lichtenheld, 2022). Die Quelle ist aber anscheinend aus
altem Quelltext kopiert, denn es wird dort noch „Key method 1“ erklärt, die im RFC-Entwurf schon
als obsolet markiert ist (Schwabe, 2016).

Tabelle 4 zeigt eine Nachricht zum Austausch der Sitzungsparameter im Klartext.

Tabelle 4: OpenVPN-Nachricht zum Austausch der Sitzungsparameter
(OpenVPN Inc., 2025c; Stipakov & Lichtenheld, 2022)

Null-Bytes Key-Method Key-Random Options-String Username Password Peer Info

4 Byte 1 Byte 48 Byte für Pre-Master,
32 Byte für Random 1,
32 Byte für Random 2

String-Länge
+ 2 Byte

String-Länge
+ 2 Byte

String-Länge
+ 2 Byte

String-Länge
+ 2 Byte

Die extra zwei Bytes für die Strings in der Nachricht enthalten die Länge des Strings und stehen vor
dem String. Hier ist zu beachten, dass die String-Länge inklusive eines abschließenden Null-Bytes zu
berechnen ist. Ist ein String leer, ist die Länge 0 (0x0000) und es werden nur die Längen-Bytes
geschrieben.

Der Options-String (manchmal auch OCC-String) hat nur noch begrenzten Nutzen in moderneren
Versionen von OpenVPN. Er wurde zur Warnung vor Inkompatibilitäten zwischen Client und Server
konzipiert, die mit modernen Implementierungen umgangen werden. Dort werden
Verbindungsparameter dynamisch ausgehandelt (Schwabe, 2016).
Der intern entwickelte Client setzt für den Options-String „V0 UNDEF“.

Peer Info enthält Informationen, die nach dem Schema „IV_<KEY>=<VALUE>\n“ aufgebaut sind (die
spitzen Klammern markieren Variablen). Einige Werte müssen unterstützt werden, während andere
optional sind (Schwabe, 2016).

Die folgenden Werte müssen laut RFC-Entwurf unterstützt sein:
• IV_CIPHERS: Verschlüsselungsalgorithmen für den Data-Channel, separiert mit „:“
• IV_PROTO: natürliche Zahl als String, die Zahl wird als Bit-Liste interpretiert
• IV_SSO: Multi-Faktor-Authentifizierung, z. B. via TOTP

Die folgenden anderen Werte werden von der internen Implementierung übermittelt ([Firmen-
interne Quelle], Bastian Kummer, 2018):
• IV_PLAT: Betriebssystem des Clients
• IV_VER: OpenVPN-Version des Clients
• IV_NCP: veraltet, ersetzt durch IV_CIPHERS; „2“ bedeutet, dass AES-128-GCM and AES-256-GCM

unterstützt werden.

Die IV_PROTO-Bits haben die folgenden Bedeutungen (aus Schwabe (2016) direkt übernommen), die
zu großem Teil Bezug nehmen auf die Control-Channel-Nachrichten, die in Abschnitt 3.8 noch
erklärt werden:
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• Bit 0: Reserviert, soll 0 sein
• Bit 1: Der Client unterstützt den Peer-IDs
• Bit 2: Der Client erwartet eine PUSH_REPLY und der Server kann diese Antwort senden, ohne eine
PUSH_REQUEST zu empfangen

• Bit 3: Der Client unterstützt den neuen Key-Exchange (Rescorla, 2010)
• Bit 4: Der Client ist in der Lage, zusätzliche Argumente in einer AUTH_PENDING-Nachricht zu

verarbeiten
• Bit 5: Der Client unterstützt die Feature-Aushandlung im P2P-Modus
• Bit 6: Der Client ist in der Lage, die Option „dns“ zu verarbeiten (veraltet)
• Bit 7: Der Client ist in der Lage, EXIT-Nachrichten zu senden und akzeptiert die Option

„protocol-flags pushed“
• Bit 8: Der Client kann AUTH_FAILED,TEMP-Nachrichten verarbeiten
• Bit 9: Der Client kann dynamisches TLS-Crypt (V2) verwenden
• Bit 10: Der Client kann das Epoch-Datenformat verwenden. Dieses Format verwendet das AEAD-

Tag am Ende und verfügt über einen 48-Bit-Paketzähler zusammen mit einer 16-Bit-Schlüssel-ID,
die eine 64-Bit-Paket-ID bilden

• Bit 11: Der Client ist in der Lage, die DNS-Nachrichten der Push-Option zu verarbeiten
• Bit 12: Der Client ist in der Lage, PUSH_UPDATE-Nachrichten zu verarbeiten

Der Server antwortet mit einer Nachricht in ähnlichem Format, lässt aber die 48 Byte für den Pre-
Master-Key in seiner Antwort weg. Daraus können nur die Schlüssel für den Data-Channel generiert
werden (Stipakov & Lichtenheld, 2022), wobei Schwabe (2016) zusätzlich einen neueren Prozess
beschreibt. Da der alte Prozess in der intern entwickelten Implementierung noch genutzt wird, wird
dieser hier einmal beschrieben:

Aus dem
• Pre-Master-Key,
• „Random 1“ vom Client und
• „Random 1“ vom Server

wird ein Master-Secret erzeugt (Key-Derivation). Dazu wird eine eine pseudo-zufällige Funktion
genutzt, die für TLS 1.0 definiert wurde. Als weiterer Input dient der String „OpenVPN master
secret“ ([Firmen-interne Quelle], Bastian Kummer, 2018).

Aus diesem
• Master-Secret,
• „Random 2“ vom Client,
• „Random 2“ vom Server,
• Client-Session-ID und
• Server-Session-ID

wird ein Session-Key erzeugt. Dafür wird dieselbe pseudo-zufällige Funktion wie für das Master-
Secret verwendet. Als weiterer Input dient der String „OpenVPN key expansion“ ([Firmen-interne
Quelle], Bastian Kummer, 2018).

Dieser „Data-Channel-Key“ wird zur weiteren Verwendung in vier gleich große, je 64 Byte lange
Keys, aufgeteilt ([Firmen-interne Quelle], Bastian Kummer, 2018; Stipakov & Lichtenheld, 2022):
• „Cipher encrypt key“
• „HMAC encrypt key“
• „Cipher decrypt key“
• „HMAC decrypt key“

wobei „encrypt“ und „decrypt“ von Client-Seite aus beschrieben sind.
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Der neue Prozess zur Key-Derivation, den Schwabe (2016) beschreibt, nutzt den in RFC 5705
(Rescorla, 2010) beschriebenen Prozess, um die Data-Channel-Keys zu erzeugen. Wird dieser neue
Prozess verwendet, sollen Pre-Master, Random 1 und Random 2 zufällige Bytes enthalten, die aber
nicht genutzt werden.

3.8. Control-Channel-Nachrichten
Nachdem die Schlüssel für den Data-Channel ausgehandelt sind, folgt die weitere Konfiguration,
wenn dies unterstützt wird. Diese Nachrichten sind nicht mehr bit- und byteweise definiert, sondern
nutzen ein Text-basiertes Protokoll (Schwabe, 2016):

Dabei beginnt der Client mit einer PUSH_REQUEST-Nachricht. Auf diese antwortet der Server mit
einer PUSH_REPLY-Nachricht, die kommaseparierte Konfigurationsoptionen enthält (nach dem
Schema „PUSH_REPLY,option 1,option 2“). Die Konfigurationsoptionen sind dabei die, die auch in
einer Konfigurations-Datei angegeben werden können, wie z. B. DNS-Server, IP-Adressen oder
Gateways, die für das VPN auf dem Client konfiguriert werden sollen.

Es gibt noch weitere Nachrichten wie
• PUSH_UPDATE, um Änderungen an der Konfiguration vorzunehmen,
• AUTH_PENDING, um erforderliche, noch nicht erfolgte Multi-Faktor-Authentifizierung zu

kommunizieren,
• RESTART, um eine Beendigung der Verbindung mit Neuaufbau zu erbitten,
• HALT, um eine Beendigung der Verbindung ohne Neuaufbau zu erbitten,
• AUTH_FAILED, um Probleme mit der Authentifizierung zu kommunizieren; diese Probleme können

als temporär markiert sein und sogar eine Dauer vor dem nächsten Versuch enthalten,
• EXIT, um die Beendigung der Verbindung zu kommunizieren,
• CR_RESPONSE, um Challenge-Response-Authentication Base-64-encodiert zu beantworten,
• INFO und INFO_PRE, um fehlende Authentifizierungsparameter zu übermitteln,
• ACC, um Nachrichten für den App Control Channel auszutauschen.

Diese weiteren Nachrichten werden von dem intern entwickelten Client nicht unterstützt ([Firmen-
interne Quelle], Bastian Kummer, 2018). Es ist davon auszugehen, dass ihre Relevanz in der Praxis
gering ist; abgesehen von AUTH_FAILED und AUTH_PENDING, die einen recht offensichtlichen Nutzen
haben.

3.9. Data-Channel
OpenVPN unterstützt für den Data-Channel mehrere Verschlüsselungsalgorithmen. Neben AES in
den Modi „GCM“ (Galois/Counter Mode) und „CBC“ (Cipher Block Chaining) mit den gängigen
Schlüssellängen von 128, 192 und 256 Bit wird auch der neuere ChaCha20-Poly1305 unterstützt
(OpenVPN Inc., 2025d). Dieser zeichnet sich dadurch aus, dass es anders als AES-CBC eine
„Authenticated Encryption with Associated Data“ (AEAD) ist, wie auch AES-GCM. ChaCha20-
Poly1305 ist aber auf Hardware ohne AES-Hardwarebeschleunigung deutlich schneller als AES
(Schirrmacher, 2016). Des Weiteren wurden früher Algorithmen unterstützt, die heute als nicht mehr
sicher gelten.

Tabelle 5 zeigt die Einordnung der Verschlüsselungsalgorithmen von OpenVPN Inc.
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Tabelle 5: Einordnung der unterstützten Algorithmen für den Data-Channel
(OpenVPN Inc., 2025d)

Empfohlene Algorithmen Optionale Algorithmen Veraltete Algorithmen
AES-256-GCM AES-256-CBC BF-CBC
AES-128-GCM AES-192-CBC DES-CBC

CHACHA20-POLY1305 AES-128-CBC DES-EDE3-CBC
AES-192-GCM DESX-CBC

none (keine Verschlüsselung)

Data-Channel-Packets nutzen die Opcodes DATA_V1 oder DATA_V2, wobei DATA_V1-Packets veraltet
sind. Ihr Aufbau unterscheidet sich, je nach dem, ob ein AEAD-Algorithmus verwendet wird oder
nicht.

Tabelle 6 zeigt die Struktur der AEAD-Data-Channel-Packets.

Tabelle 6: Aufbau eines DATA_V2-Pakets mit AEAD-Cipher

Peer-ID Packet-ID Payload Authentication-Tag
3 Byte 8 Byte variabel 16 Byte

nur in DATA_V2 Schutz vor
Replay-Attacken

verschlüsselt

Bei Data-Channel-Packets wird die Key-ID genutzt, die Teil jedes OpenVPN-Packets ist (vgl.
Tabelle 1), um die Session-Keys zu identifizieren.

Die Peer-ID, die in DATA_2-Packets enthalten ist, identifiziert Clients und erlaubt damit den Wechsel
von IP-Adressen und Ports. Durch sie muss eine Verbindung nicht neu aufgebaut werden, sondern
die bestehende Session und damit verbundene Sitzungsparameter können trotz neuer IP-Adresse
oder Port weiter genutzt werden.

Die Packet-ID schützt vor Replay-Angriffen und besteht aus zwei Byte Epoch und sechs Byte Epoch
Counter. Sie wird außerdem für den Initialisierungsvektor (auch IV oder Nonce; Kurzwort für
„Number used once“) zur Entschlüsselung genutzt.

Der Authentication-Tag kann mit Session-Key und Initialisierungsvektor erzeugt werden, um die
empfangenen Daten auf Integrität (vgl. Definition 2) und Authentizität (vgl. Definition 4) zu prüfen.
Bei DATA_V2-Packets sind Opcode, Key-ID, Peer-ID, Packet-ID und Payload signiert, aber bei
DATA_V1-Packets sind nur Packet-ID und Payload signiert (Schwabe, 2016).

Nicht-AEAD-Data-Channel-Packets sind wie folgt aufgebaut:

Tabelle 7: Aufbau eines DATA_V2-Pakets mit Nicht-AEAD-Cipher

Peer-ID HMAC IV Packet-ID Payload
3 Byte ca. 20-32 Byte,

je nach Algorithmus
16, 24 oder 32 Byte,

je nach Algorithmus
4 Byte variabel

nur in DATA_V2 verschlüsselt,
nur bei AES-CBC

verschlüsselt

OpenVPN unterstützt hier, entgegen dem was OpenVPN Inc. (2025d) behauptet, AES in den Modi
CBC, OFB und CTR (Schwabe, 2016). Davon wird an einigen Stellen aber nur CBC überhaupt
erwähnt (OpenVPN Inc., 2025d). Deswegen wird hier vor allem auf den AES-CBC-Modus
eingegangen.
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Der HMAC hat eine Länge, die vom gewählten Hashing-Algorithmus abhängt. SHA-256
beispielsweise erzeugt einen Hash mit 32 Byte Länge. Andere Hash-Verfahren können aber längere
Hashes erzeugen, wie z. B. SHA-3 mit bis zu 64 Byte, oder MD5 mit 16 Byte, das aber als unsicher
gilt. Der HMAC wird über dem verschlüsselten Rest des Pakets erzeugt (IV, ggf. Packet-ID, Payload).
Ist der HMAC inkorrekt, muss das Paket ohne Entschlüsselung verworfen werden.

Der IV wird bei CBC pseudo-zufällig gewählt. Seine Länge hängt vom gewählten
Verschlüsselungsalgorithmus ab:
• AES-128: 16 Byte
• AES-192: 24 Byte
• AES-256: 32 Byte

Der CBC-Modus enthält eine Packet-ID. OFB und CTR nutzen die ersten acht Byte als Packet-ID.

Cipher Negotiation oder Negotiable Crypto Parameters (NCP) erlauben es, den symmetrischen
Verschlüsselungsalgorithmus während des Verbindungsaufbaus zwischen Server und Client
auszuhandeln.

3.10. TLS-Auth
TLS-Auth erlaubt es, alle Kontroll-Pakete zu signieren. Dadurch kann der Server sämtliche Pakete
ohne eine gültige Signatur ignorieren. Dieses Feature erlaubt dem Server einen besseren Schutz vor
Denial-of-Service-Angriffen, da Angreifer keine solche Signatur erzeugen können. Ein solcher
Angriff wird in Quarkslab SAS (2017), Kapitel 5.1 demonstriert.

Die HMAC-Signatur wird mithilfe eines „OpenVPN Static Key V1“ erzeugt. Wird der Hashing-
Algorithmus nicht spezifiziert, wird SHA-1 verwendet (Schwabe, 2016).

Tabelle 8 zeigt die Struktur von TLS-Auth-Paketen. TLS-Auth-Pakete enthalten weitere Felder, die in
den Plaintext-Control-Channel-Paketen nicht enthalten sind (vgl. Tabelle 3):

Tabelle 8: Aufbau eines Control-Channel-Pakets mit TLS-Auth
(Schwabe, 2016)

Eigene
Session-ID

HMAC Replay-
Packet-ID

Anzahl
ACKs

ACKs Peer
Session-ID

Paket-ID Daten

8 Byte 16-64 Byte 8 Byte 1 Byte 4 Byte ×
Anzahl
ACKs

8 Byte 4 Byte 0 bis n Byte

Die Replay-Packet-ID ist zusammengesetzt aus 4 Byte Paket-ID und 4 Byte Timestamp. Sie werden
allerdings in der umgekehrten Reihenfolge als 64-Bit-Counter genutzt (Schwabe, 2016).

Zur Erzeugung des HMAC wird der statische Key und das Pseudo-Paket in Tabelle 9 genutzt.

Tabelle 9: Pseudo-Paket, mit dem der TLS-Auth-HMAC konstruiert wird
(Schwabe, 2016)

Replay-
Packet-ID

Opcode &
Key-ID

Eigene
Session-ID

Anzahl
ACKs

ACKs Peer
Session-ID

Paket-ID Daten

8 Byte 1 Byte 8 Byte 1 Byte 4 Byte ×
Anzahl
ACKs

8 Byte 4 Byte 0 bis n Byte

Sowohl Opcode als auch Key-ID werden im HMAC berücksichtigt. Außerdem wechselt die Replay-
Packet-ID ihre Position an den Anfang des Pakets. Der HMAC selbst ist logischerweise nicht in dem
Pseudo-Paket.
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3.11. TLS-Crypt
TLS-Crypt verschlüsselt die OpenVPN-Pakete des Control-Channels mit einem statischen Pre-
shared Key.

TLS-Crypt-V2 geht noch einen Schritt weiter: Hier wird der Schlüssel aus dem Client-Zertifikat
genutzt, und so die Nutzung unterschiedlicher Schlüssel für jeden Client ermöglicht.

Beide TLS-Crypt-Modi sind recht aufwendig in ihrer Konstruktion (Schwabe, 2016) und werden von
der internen Implementierung nicht unterstützt ([Firmen-interne Quelle], Bastian Kummer, 2018).
Aus diesen Gründen wird auf eine detaillierte Erklärung dieses Teils des Protokolls an dieser Stelle
verzichtet.

3.12. Fazit zum OpenVPN-Protokoll
Im Folgenden möchte ich meine Analyse mit einer kurzen Kritik des Protokolls abschließen, um auf
die Komplexität des Protokolls und den unverschlüsselten Handshake einzugehen.

3.12.1. Mehr als TLS
Ich halte das OpenVPN-Protokoll für komplizierter, als es sein müsste:
Statt die bestehende TLS-Verbindung zu nutzen, um darüber die Nutzdaten verschlüsselt zu
transportieren, wird diese nur für den Control-Channel genutzt, um darüber Nutzer-
Authentifikation abzuwickeln und Sitzungsparameter auszuhandeln. Das ist wahrscheinlich
historisch gewachsen, um UDP über den eingebauten Mechanismus für Zuverlässigkeit unterstützen
zu können, aber den Data-Channel nicht zuverlässig machen zu müssen (Schwabe, 2016).
Bei UDP gibt es mit Datagram Transport Layer Security (DTLS) (Rescorla et al., 2022) und Quick
UDP Internet Connections (QUIC) (Iyengar & Thomson, 2021) inzwischen aber offene Standards, die
die Zuverlässigkeit beim Handshake gewährleisten und Verbindungen mit TLS absichern können.
„wstunnel“ bietet beispielsweise ein anderes TLS-basiertes VPN auf TCP-Websockets (Gerard, 2025),
Ferrumgate hat ein auf QUIC aufbauendes VPN-Protokoll entwickelt (Ferrumgate, 2023) und
Fortinet bietet in den eigenen VPN-Produkten einen DTLS-Modus (candawi, 2023).

3.12.2. Fingerprinting
OpenVPN muss wegen des eigenen Mechanismus für Zuverlässigkeit die OpenVPN-Verbindung
unverschlüsselt initiieren:
Damit weist die Initiierung mit Opcodes, Key-ID, Session-IDs, Packet-IDs und Acknowledgements
Metadaten im Klartext auf. Diese Metadaten unterscheiden sich nicht stark von Handshake zu
Handshake und erzeugen somit ein leicht erkennbares Byte-Pattern, was das Protokoll
identifizierbar macht.
Es eignet sich damit nicht zur Umgehung von Zensur, da Regierungen mit Zugriff auf die
Netzwerkinfrastruktur eines Landes dieses Byte-Pattern nutzen können, um OpenVPN-
Verbindungen zu unterbinden (Xue et al., 2024).
Um abwärtskompatibel zu sein, wird das Problem selbst bei TLS-Crypt nicht komplett behoben und
enthält weiter einen unverschlüsselten Opcode, Key-ID und Session-ID. Der Opcode am Beginn
eines jeden Pakets wird auch bleiben müssen, um die Pakete differenziert behandeln zu können.
Ohne Opcode wäre es unmöglich, TLS für UDP abzusichern, da der Opcode im Endeffekt für die
Initiierung der zuverlässigen OpenVPN-Verbindung erforderlich ist.

TLS, DTLS und QUIC weisen eventuell auch gewisse Byte-Patterns auf; durch ihre ständige oder
wachsende Verwendung wäre Fingerprinting allerdings vermutlich erschwert. Damit könnte ein
VPN-Protokoll das TLS, DTLS oder QUIC nutzt, unter dem anderen Traffic wie HTTPS im Internet
weitgehend unerkannt bleiben.
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3.12.3. Plaintext-Handshake ohne Integritätsnachweis
Neben dem DoS-Angriff auf einen OpenVPN-Server durch einen fehlenden Authentizitätsnachweis
(Quarkslab SAS, 2017) gibt es noch ein weniger schwerwiegendes Problem im Handshake zur
OpenVPN-Sitzungsinitiierung:
Er verfügt über keine kryptografischen Integritätsmechanismen. Somit ist theoretisch ein Machine-
in-the-Middle-Angriff denkbar, bei dem die OpenVPN-Pakete manipuliert werden. Es ist dabei nicht
möglich, die potenzielle Manipulation dieser Pakete zu erkennen. Dadurch könnte ein erfolgreicher
Verbindungsaufbau verhindert werden (Denial of Service). Wenn TLS-Auth oder TLS-Crypt
konfiguriert wurden, gibt es dieses Problem nicht, da diese Modi Integritätsmechanismen auch in die
ersten OpenVPN-Pakete integrieren.

3.12.4. Viele Konfigurationsmöglichkeiten
Die vielen Konfigurationsmöglichkeiten erschweren eine sichere und erfolgreiche Konfiguration und
erhöhen die Komplexität der Software. WireGuard geht die entgegengesetzte Richtung, hat sehr
wenige Konfigurationsoptionen und kann in ca. 4000 Zeilen Code implementiert werden (Donenfeld,
2015).
Ein Beispiel für die unsichere Konfiguration von OpenVPN ist die Konfigurationsmöglichkeit von
unsicheren Verschlüsselungsalgorithmen. Die werden zwar nicht empfohlen, sind aber auch nicht
verboten (OpenVPN Inc., 2025d). WireGuard hingegen erlaubt gar keine Konfiguration an der Stelle,
sondern erzwingt ChaCha20-Poly1305.

Die Konfigurabilität von OpenVPN ist aber auch ein Vorteil, da es beispielsweise die Zuweisung von
IP-Adressen dynamisch über DHCP unterstützt (Yonan, 2018), was WireGuard nicht erlaubt
(Donenfeld, 2015).
Ein weiterer Vorteil der Konfigurabilität: Sollte ein konfigurierter Verschlüsselungsalgorithmus in
Zukunft gebrochen werden, erlaubt OpenVPN einen Wechsel des Algorithmus, während man bei
WireGuard auf ein Software-Update warten müsste.
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4. Analyse der bestehenden Software
Securepoints OpenVPN-Client-Library kann sowohl als Standalone-Binary kompiliert werden als
auch als Shared-Library. Die Software unterstützt verschiedene Betriebssysteme:
• Linux
• Android (wie Linux, aber TUN-Device wird vom Betriebssystem verwaltet)
• iOS
• macOS (als iOS-App, über Apples „Designed for iPad“)
• FreeBSD
• Windows

Die Software hat eine Abhängigkeit auf OpenSSL für TLS im Control-Channel und die
Verschlüsselung im Data-Channel.

4.1. Struktur des Quellcodes
Abgesehen von der main.c gibt es zu jeder .c-Datei eine .h-Header-Datei.

libovpn-client und ovpn-client bieten eine Application Programming Interface (API) für die
Nutzung. ovpn-client enthält außerdem den Programm-Loop, der die Verbindung initiiert und
Pakete verarbeitet.

Das Modul options implementiert das Parsen von Konfigurationsdateien. Es definiert das struct
options_s, in dem die geparsten Konfigurationsoptionen gespeichert werden. Für TLS-
Verbindungen stellt bio_s_packet_buffer gebufferte I/O-Funktionen bereit und kapselt dabei die
Funktionalität aus openssl/bio.h. Das Modul buffer enthält eine eigene Buffer-Implementierung
mit einer festen Größe von 2048 Byte. Mit dbg werden Logging-Funktionen bereitgestellt, während
packet_buffer Funktionen zum gebufferten Schreiben und Lesen von Paketen implementiert. Das
Modul random stellt plattformabhängige, kryptografisch sichere Pseudozufallszahlengeneratoren
bereit. Das Modul ssl enthält Funktionen zum Parsen von OpenSSL-Chiffren, Zertifikaten und
Private Keys sowie zur Ver- und Entschlüsselung von Paketen. Über tun wird die Konfiguration
eines TUN-Devices ermöglicht, einschließlich DNS-, MTU- und Gateway-Einstellungen. Die Datei
main.c bildet den Einstiegspunkt der Anwendung: Sie parst eine Konfigurationsdatei und startet
anschließend den VPN-Tunnel.

4.2. Schnittstellen der Bibliothek
Die Bibliothek stellt eine Schnittstelle zum Verbindungsaufbau in C zur Verfügung, die allerdings
über zwei Header-Dateien verteilt ist. Der Sinn hinter dieser Separation erschließt sich mir nicht.

ovpn-client.h (Listing 3) verfügt über Funktionen, die die bisher empfangenen und gesendeten
Bytes zurückgeben (Zeilen 1 und 2), sowie über eine Funktion, die mit einer geparsten OpenVPN-
Konfiguration ein VPN startet (Zeile 3).
Außerdem gibt es Funktionen, die das VPN wieder beenden (Zeilen 4 und 5), oder pausieren (Zeile
6). Es gibt allerdings keine Funktion, um die pausierte Sitzung wieder zu starten.

C

1
2
3
4
5
6

long long ovpn_in_bytes(void);
long long ovpn_out_bytes(void);
int ovpn_client_run(struct options_s *opt);
void ovpn_client_stop(void);
void ovpn_client_logout(void);
void ovpn_client_hibernate(void);

Listing 3: Auszug der Schnittstellendefinition aus ovpn-client.h
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libovpn-client.h (Listing 4) nutzt selbst ovpn-client.h, ergänzt sie aber, da es eine Funktion
enthält, die das Verbinden über einen String statt über ein struct options_s erlaubt (Zeile 1). Die
Funktion in Zeile 2 hingegen ruft nur ovpn_client_stop() auf.

C

1
2

int ovpn_client_connect_with_string(char *config_string);
int ovpn_client_disconnect(void);

Listing 4: Auszug der Schnittstellendefinition aus libovpn-client.h

Eine weitere in den Clients genutzte Schnittstelle ist die Funktionsdefinition für Log-Aufrufe (Zeile
1). Diese Funktion kann von Clients implementiert werden, um mit der Funktion in Zeile 2 den
voreingestellten Log-Nachrichten-Handler zu ersetzen. Somit können zum Beispiel Nachrichten der
Library in der Datenbank einer Client-Applikation gespeichert werden.

C

1
2

typedef void (*msg_handler_t)(int, char *);
void msg_set_handler(msg_handler_t new_msg_handler);

Listing 5: Auszug der Schnittstellendefinition aus dbg.h

4.3. Konfiguration
Ein zentraler Bestandteil der bestehenden Software ist der Konfigurations-Parser in options.h und
options.c. Dieser Parser parst die Konfigurations-Datei zu einer Konfiguration vom Typ struct
options_s. Um den Parser zu verstehen, muss man zuerst den Aufbau einer OpenVPN-
Konfigurationsdatei verstehen. Die meisten Konfigurationsoptionen lassen sich dabei als einzeiliges
n-Tupel aus Option und Wert (Key-Value-Pair) verstehen.

Beispiele:
• dev tun konfiguriert, welche Art von virtuellem Netzwerkinterface angelegt werden soll.

‣ tun für tun-Devices, die auf OSI-Layer 3 (IP) operieren,
‣ tap für tap-Devices, die auf OSI-Layer 2 (Ethernet) operieren.

• cipher AES-256-GCM konfiguriert die Verschlüsselung des Data-Channels.
‣ die validen Optionen sind in Tabelle 5 aufgeführt.

• auth SHA256 konfiguriert den Hashing-Algorithmus für die Authentifizierung im Data-Channel.
• proto tcp kann global für alle Server das Protokoll auf Vermittlungs- und Transport-Schicht-

Ebene festlegen.
‣ Die validen Optionen sind TCP, UDP, TCPv6 und UDPv6, wobei die Groß-/Kleinschreibung

ignoriert wird und das 'v' in den IPv6-basierten Protokollen optional ist.
• remote janhopp.de 1194 udp konfiguriert einen Server, und auf welchem Port er erreichbar ist.

‣ Als erster Wert kann sowohl eine IP-Adresse, als auch eine Domain aufgeführt werden.
‣ Der zweite Wert ist ein optionaler Port, der Standard-Port für OpenVPN ist 1194.
‣ Der dritte Wert ist optional das Transport-Protokoll, falls es sich von dem über proto gesetzten

Wert unterscheidet, oder proto nicht gesetzt ist.
• cert, ca, key und tls-auth haben einen Datei-Pfad als Wert, wenn sie einzeilig sind.

‣ tls-auth hat dabei die Besonderheit, kein gängiges Key-Format zu verwenden.

Neben den einzeiligen Optionen gibt es auch mehrzeilige Optionen. Mehrzeilige Optionen starten
dabei mit <option> und enden mit </option>. Dies ist nützlich, um nur eine Konfigurations-Datei
zu haben, denn so lassen sich Zertifikate und Schlüssel in die Konfigurations-Datei integrieren. Zu
den hier unterstützten mehrzeiligen Optionen zählen cert, ca, key und tls-auth.

Zwingend erforderlich laut der validate-Funktion für struct options_s sind cert, ca, key,
remote, und link-mtu oder tun-mtu, die sich gegenseitig ausschließen.
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4.4. Main-Loop
Der Main-Loop des Programms organisiert den Verbindungsaufbau und verhält sich dabei
vergleichbar mit einem Mealy-Automaten. Die Darstellung dieses Automaten wäre allerdings
unübersichtlich. Der Main-Loop wechselt seinen Zustand, gespeichert als enum
ctrl_channel_state_e ctrl_state in struct ovpn_ctx_s je nach seinem aktuellen Zustand und
dem Opcode des aktuellen Pakets (vgl. Tabelle 2).

Listing 6 zeigt die möglichen Zustände des Control-Channels.
C

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

#define STATE_NO_INPUT 0x10

enum ctrl_channel_state_e
{
  STATE_INIT = 0x0,
  STATE_WAIT_FOR_HARD_RESET = 0x1,
  STATE_SSL_CONNECT = 0x2 | STATE_NO_INPUT,
  STATE_SSL_CONNECT_WANT_READ = 0x3,
  STATE_SSL_GEN_KEY_DATA = 0x4 | STATE_NO_INPUT,
  STATE_SSL_WRITE_KEY_DATA = 0x5 | STATE_NO_INPUT,
  STATE_SSL_WRITE_KEY_DATA_WANT_READ = 0x6,
  STATE_SSL_READ_KEY_DATA = 0x7,
  STATE_SSL_ESTABLISHED = 0x8,
  STATE_SSL_HIBERNATE = 0x9,
  
  STATE_ANY = 0xa,
};

Listing 6: ctrl_channel_state_e-Enum aus ovpn-client.c

Die Zustandsübergänge sind über die Funktionen in der Funktionsmatrix in Listing 7 definiert, das
verwendete Makro und die Funktionsdefinition befinden sich darüber.

C

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16

#define _H(ctrl_state, opcode) ((ctrl_state << 4) + opcode)

typedef int (*ovpn_handler_fn)(struct ovpn_ctx_s *, struct ovpn_parsed_frame_s *);

ovpn_handler_fn ctrl_handler[512] = {
  [_H(STATE_WAIT_FOR_HARD_RESET, P_CONTROL_HARD_RESET_SERVER_V2)] =
ovpn_handle_hard_reset_server,
  [_H(STATE_SSL_CONNECT, NOOP)] = ovpn_handle_ssl_connect,
  [_H(STATE_ANY, P_CONTROL_HARD_RESET_SERVER_V2)] = ovpn_handle_hard_reset_server,
  [_H(STATE_SSL_ESTABLISHED, P_CONTROL_SOFT_RESET_V1)] = ovpn_handle_soft_reset,
  [_H(STATE_SSL_CONNECT_WANT_READ, P_CONTROL_V1)] = ovpn_handle_ssl_connect,
  [_H(STATE_SSL_GEN_KEY_DATA, NOOP)] = ovpn_handle_gen_ssl_key_data,
  [_H(STATE_SSL_WRITE_KEY_DATA, NOOP)] = ovpn_handle_ssl_key_data,
  [_H(STATE_SSL_WRITE_KEY_DATA_WANT_READ, P_CONTROL_V1)] = ovpn_handle_ssl_key_data,
  [_H(STATE_SSL_READ_KEY_DATA, P_CONTROL_V1)] = ovpn_handle_ssl_key_data,
  [_H(STATE_SSL_ESTABLISHED, P_CONTROL_V1)] = ovpn_handle_ctrl,
};

Listing 7: Control-Channel-Funktionsmatrix aus ovpn-client.c (gekürzt)

Nachdem über diese Zustände eine Verbindung aufgebaut und konfiguriert ist, beginnt der
Datentransfer. Die ans TUN-Device geleiteten, zu sendenden Daten werden verschlüsselt, in ein
OpenVPN-Paket gekapselt und über den Socket an den Server geschickt. Die vom Socket
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empfangenen OpenVPN-Pakete werden geparst und ihre Nutzdaten entschlüsselt und an das TUN-
Device weitergeleitet.

Abbildung 7 stellt die Komponenten und ihr Zusammenspiel in der Software vom Quellcode
abstrahiert dar. Sie zeigt den OpenVPN-Client als System, das IP-Packets an das TUN-Device
empfängt, verschlüsselt, mit OpenVPN-Metadaten einpackt und über den Socket an den Server
verschickt. In entgegengesetzter Richtung werden OpenVPN-Packets vom Socket empfangen,
entpackt, entschlüsselt und die Daten als IP-Packets an das TUN-Device weitergeleitet.
Der Data-Channel erhält sein Schlüsselmaterial vom Control-Channel. Dieser besteht aus einem
Reliability Layer, einer TLS-Session und der Session Negotiation. Der Reliability Layer stellt über
Acknowledgements die Zuverlässigkeit sicher, damit eine TLS-Session aufgebaut werden kann. Über
die TLS-Session werden dann die Sitzungsparameter ausgehandelt und Schlüsselmaterial
ausgetauscht, das im Data-Channel zur Ver- und Entschlüsselung genutzt wird.

IP-Packets

keys

OpenVPN-Packets

TUN-Device

Data-Channel

En-/Decryption

En-/De-Capsulation

Control-Channel

Session Negotiation

TLS-Session

Reliability Layer

TCP-/UDP-Socket

Abbildung 7: Überblick der notwendigen Komponenten für einen OpenVPN-Client

4.5. Data-Channel
Die statischen Funktionen ovpn_link_write, ovpn_link_read und ovpn_parse_frame in ovpn-
client.c serialisieren und deserialisieren die Pakete, die über die Verbindung zum Server gesendet
und empfangen werden. Dabei ist ovpn_link_write für die Serialisierung aber nicht für die
Verschlüsselung zuständig. Die Parameter sind aber nicht bloß die zu übermittelnden Bytes, sondern
auch das struct ovpn_ctx_s, das alle für die Sitzung relevanten Daten enthält. Dabei wird
ovpn_link_write für die Serialisierung aller verschiedenen Paket-Formate genutzt, die sich im
Aufbau teils stark unterscheiden. Daher ist die Funktion recht verschachtelt. ovpn_link_read ist
dafür relativ simpel gehalten, da die Serialisierung nach dem Lesen in ovpn_parse_frame erfolgt.

Die kryptografischen Funktionen des Data-Channels unterscheiden sich, je nachdem, ob eine
AEAD-Cipher eingesetzt wird. Die Funktionssignaturen in Listing 8 sind recht lang, da sie für viele
Pointer die Länge als weiteren Parameter benötigen. Das ist bei C notwendig, da Pointer an sich

26



keine Länge besitzen. Neben cipher, key, iv und den Cipher- und Klartextparametern (in und out)
wird ein Funktionspointer übergeben, der Fehler loggen kann. Bei den AEAD-Funktionen kommen
noch aad (Additional Authenticated Data) und der Authentication-Tag tag hinzu.

C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

int encrypt_data(const EVP_CIPHER *cipher, const void *key, size_t key_len,
                const void *iv, size_t iv_len, void *in, size_t in_size,
                void *out, int *out_size, void (*err_cb)(char *, ...));
int decrypt_data(const EVP_CIPHER *cipher, const void *key, size_t key_len,
                const void *iv, size_t iv_len, void *in, size_t in_size,
                void *out, int *out_size, void (*err_cb)(char *, ...));
                
int encrypt_data_aead(const EVP_CIPHER *cipher, const void *key, size_t key_len,
                      const void *iv, size_t iv_len, void *in, size_t in_len,
                      void *out, int *out_len, const void *aad, size_t aad_len,
                      void *tag, size_t *tag_len, void (*err_cb)(char *, ...));
int decrypt_data_aead(const EVP_CIPHER *cipher, const void *key, size_t key_len,
                      const void *iv, size_t iv_len, void *in, size_t in_len,
                      void *out, int *out_len, const void *aad, size_t aad_len,
                      void *tag, size_t tag_len, void (*err_cb)(char *, ...));

Listing 8: Funktionssignaturen zur Verschlüsselung des Data-Channels aus ssl.h

4.6. Weitere Komponenten
Es gibt noch weitere Komponenten der Software, die nicht zentraler Bestandteil der
Implementierung des OpenVPN-Protokolls, aber dennoch zu erwähnen sind.

4.6.1. tun-Geräteverwaltung
Um ein VPN erfolgreich auf dem Gerät zu starten, ist ein TUN-Device erforderlich. Dies wird so
konfiguriert, dass die Routen, die über das VPN erreichbar sein sollen, auf das TUN-Device zeigen.
Es gibt über Makros definierte „Setter“ für DNS, Maximum Transmission Unit (MTU) und Gateways
für IPv4 und IPv6 sowie Funktionen zum Hinzufügen von Routen und IP-Adressen zur TUN-Device-
Konfiguration. Mit tun_open() kann ein neues TUN-Device erstellt und die Konfiguration darauf
angewendet werden (Listing 9). tunConfig_reset() wird zum Speichermanagement verwendet, da
dies in C mit free() und memset() manuell erfolgen muss.

C

1
2
3
4
5
6
7
8
9

10

#define tunConfig_set_dns(cfg, dns, cnt) (cfg)->dnsServer = dns, (cfg)->dnsCnt = cnt
#define tunConfig_set_mtu(cfg, mtu_value) (cfg)->mtu = mtu_value
#define tunConfig_set_remote_gateway(cfg, arg) (cfg)->remote_gateway = arg
#define tunConfig_set_remote_gateway_ip6(cfg, arg) (cfg)->remote_gateway_ip6 = arg

void tunConfig_add_route(tunConfig *cfg, char *dst, char *msk, char *router);
void tunConfig_add_address(tunConfig *cfg, char *addr, char *mask);
void tunConfig_reset(tunConfig *cfg);
int tun_open(tunConfig *config, tun_ctx_s *tun_ctx);
int tun_close(tun_ctx_s *tun_ctx);

Listing 9: Angepasster Auszug aus tun.h

4.6.2. buffer-Verwaltung
buffer besteht aus drei Feldern, die über Funktionen manipuliert werden:
• data, eine Array von 2048 Byte,
• pos, die Position in data, von der gelesen werden soll,
• len, die Länge von lesbaren Daten in data.

Dabei sollen die Funktionen einen sicheren Zugriff erlauben. Leider kam es in der Vergangenheit
aber selbst mit diesen Funktionen zu den eingangs beschriebenen Abstürzen (vgl. Listing 1).
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ovpn-client.c sowie packet_buffer.c und darüber bio_s_packet_buffer.c verwenden dieses
struct buffer_s, um darin Daten für die Weiterverarbeitung (z. B. Ver- und Entschlüsselung)
zwischenzuspeichern.

4.6.3. Makefile
Die Makefile (Listing 10) konfiguriert den Build der Library. Leider funktioniert sie in diesem
Zustand vor allem auf FreeBSD und Linux, nicht aber unter macOS und Windows. Das liegt an dem
in Zeile 2 konfigurierten Pfad /usr/lib, da dieser auf macOS und Windows nicht existiert oder
nicht die notwendigen Dateien enthält. Der Build-Prozess für diese Plattformen wird über andere
Dateien in den jeweiligen Projekten konfiguriert. Abgesehen davon ist die Konfiguration der
Makefile ein aufwendiger Prozess, so muss z. B. jede neue Header-Datei im Projekt explizit in
HEADERS ergänzt werden. Außerdem muss selbst der clean-Befehl (Zeilen 20 bis 22), also das
Löschen der Build-Artefakte, explizit definiert werden. Das alles erlaubt zwar eine sehr exakte
Konfiguration des Builds, erfordert jedoch auch viel Fachwissen.

Makefile

1
2
3
4
5
6

7
8
9

10

11
12
13
14
15
16
17
18
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20
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OPENSSL_CFLAGS =
OPENSSL_LIBS = -L/usr/lib -lcrypto -lssl
CFLAGS = -ggdb -Wall -Wextra -Wsign-compare -Werror -std=c99  ${OPENSSL_CFLAGS} -fPIC
LDFLAGS = -ggdb -Wall -Wextra -Wsign-compare -Werror -std=c99 ${OPENSSL_LIBS} -pthread

OBJECTS = ovpn-client.o bio_s_packet_buffer.o packet_buffer.o buffer.o ssl.o dbg.o
tun.o random.o options.o contrib/strsep.o
EXEC_OBJECTS = ${OBJECTS} main.o
LIB_OBJECTS = ${OBJECTS} libovpn-client.o

HEADERS = bio_s_packet_buffer.h buffer.h dbg.h options.h packet_buffer.h random.h
ssl.h tun.h contrib/strsep.h

ovpn-client: ${EXEC_OBJECTS} ${HEADERS}
  ${CC} ${EXEC_OBJECTS} -o ovpn-client ${LDFLAGS}
  
libovpn-client.so: ${LIB_OBJECTS}
  ${LD} -shared -soname $@.1 -o $@.1.0 ${LIB_OBJECTS} ${OPENSSL_LIBS}
  ln -fs $@.1.0 $@.1
  ln -fs $@.1 $@
  
clean:
  rm -f ${OBJECTS} main.o libovpn-client.o ovpn-client libovpn-client.so*
  rm -rf doc

Listing 10: Auszug aus der Makefile-Datei der internen OpenVPN-Client-Bibliothek
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5. Planung der Reimplementierung
Vor dem Beginn der Implementierung mussten einige Entscheidungen getroffen werden:
• Welche Teile des Protokolls sollen initial unterstützt werden?
• Wie soll die Schnittstelle für Clients definiert werden?
• Welche Programmiersprache sollte verwendet werden?

5.1. Anforderungen an die Software

FA 1: Funktionale Anforderung

OpenVPN-Konfiguration einlesen

Die Bibliothek muss das OpenVPN-Konfigurationsformat implementieren und
unterstützen, um darauf aufbauend die Verbindung herstellen zu können.

FA 2: Funktionale Anforderung

OpenVPN-Handshake unterstützen

Die Bibliothek muss den vollständigen OpenVPN-Handshake-Prozess implementieren und
unterstützen, um damit die Datenübertragung auszuhandeln.

FA 3: Funktionale Anforderung

OpenVPN-Daten-Tunneling unterstützen

Die Bibliothek muss in der Lage sein, VPN-Nutzdaten über einen gesicherten Tunnel zu
übertragen.

FA 4: Funktionale Anforderung

Plattformübergreifende Nutzung ermöglichen

Die Bibliothek kann den Einsatz auf verschiedenen Plattformen (z. B. macOS, Linux,
Android, iOS) erlauben, sollte aber zumindest die Erweiterbarkeit um weitere Plattform-
Unterstützung erlauben.

FA 5: Funktionale Anforderung

Routing konfigurieren (plattformabhängig)

• Auf macOS und Linux soll die Bibliothek Routing selbst übernehmen können.
• Auf Android und iOS soll Routing durch die Plattform-APIs gesteuert werden.

Es gibt noch eine paar weitere Anforderungen, die aber optional sind. Sie gehen teilweise weit über
den Umfang eines Prototypen hinaus und werden hier nur zum Zweck der Vollständigkeit erwähnt.
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FA 6: Funktionale Anforderung

(Optional) Soft-Resets unterstützen

Die Bibliothek kann Unterstützung für OpenVPN-Soft-Resets bereitstellen.

FA 7: Funktionale Anforderung

(Optional) TLS-Auth (Authenticated Control Channel Packets)

Die Bibliothek kann signierte (TLS-Auth) Control-Channel-Pakete unterstützen.

FA 8: Funktionale Anforderung

(Optional) TLS-Crypt und TLS-Crypt-V2 (Encrypted Control Channel Packets)

Die Bibliothek kann verschlüsselte (TLS-Crypt und TLS-Crypt-V2) Control-Channel-Pakete
unterstützen.

Abwesend sind hier Anforderungen für ovpn_client_hibernate() (vgl. Listing 6), um die
Verbindung zu pausieren. Dieses Feature ist dazu geeignet, in nativen Clients implementiert zu
werden, statt in einer plattformunabhängigen Bibliothek, da gerade mobile Plattformen dafür eigene
Mechanismen besitzen. Außerdem übersteigt das Feature den Umfang eines Prototypen.

5.2. Anforderungen an die Schnittstelle der Software-Bibliothek
Wegen ihrer Übersichtlichkeit sind die Funktionssignaturen hier schon in Go angegeben.

SA 1: Schnittstellenanforderung

Connect: Verbindungsaufbau initiieren und Tunnel starten

Parameter:
• Konfiguration als string

Rückgabewert:
• ob die Operation erfolgreich war als bool

Funktionssignatur in Go:

func Connect(config string) bool
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SA 2: Schnittstellenanforderung

Disconnect: Verbindungsabbau initiieren und Tunnel stoppen

Parameter: keine erforderlich

Rückgabewert:
• ob die Operation erfolgreich war als bool

Funktionssignatur in Go:

func Disconnect() bool

SA 3: Schnittstellenanforderung

InBytes: Gibt Information über empfangene Bytes seit Start der Software

Rückgabewert:
• empfangene Bytes als natürliche Zahl

Funktionssignatur in Go:

func InBytes() uint64

SA 4: Schnittstellenanforderung

OutBytes: Gibt Information über gesendete Bytes seit Start der Software

Rückgabewert:
• gesendete Bytes als natürliche Zahl

Funktionssignatur in Go:

func OutBytes() uint64

SA 5: Schnittstellenanforderung

SetLogHandler: Funktion zum Setzen einer Logging-Funktion innerhalb von Apps statt in
Go nativ

Parameter:
• Funktion, die Log-Level und Log-Nachricht entgegennimmt, und diese loggt

Funktionssignatur in Go:

func SetLogHandler(logger func(logLevel int, message string))

5.3. Eingrenzung
Zur prototypischen Entwicklung gehören nur die Features, die zwingend erforderlich sind, um das
OpenVPN-Protokoll in simpelster Form abzubilden.

TLS-Auth, TLS-Crypt oder TLS-Crypt-V2 zähle ich nicht dazu, da sie zusätzliche Features bieten, die
über ein „Minimum Viable Product“ hinausgehen.
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Zur Portabilität der Software-Bibliothek trägt neben der Wahl der Programmiersprache auch die
Architektur der Software bei. Dazu gilt es, darauf zu achten, Plattform-Abhängigkeiten bei der
Entwicklung zu erkennen und mit geeigneten Mitteln zu abstrahieren. Das ermöglicht die spätere
Erweiterung um andere Plattformen, die über die Entwicklung eines Prototypen hinausgeht.

Da auch die interne Originalimplementierung kein Ethernet-Bridging erlaubt, wird auch hier im
Folgenden nur IP-Packet-Tunneling betrachtet.

5.4. Vergleich von Programmiersprachen
Für die Reimplementierung der OpenVPN-Library gab es im Betrieb zwei Vorschläge für die Wahl
der Programmiersprache: Go und Rust. Um die Entscheidung verständlich darzulegen, werden beide
Sprachen kurz vorgestellt.

5.4.1. Go
Go, auch bekannt als Golang, wurde 2007 bei Google entwickelt und 2009 unter einer Open-Source-
Lizenz veröffentlicht (Donovan & Kernighan, 2016). Ziel der Sprache war es, die Entwicklung
moderner, skalierbarer Software durch eine Kombination aus Einfachheit, Effizienz und starken
Tooling-Mechanismen zu erleichtern (Pike, 2023). Die Motivation hinter der Entwicklung war, dass
Google komplexe Software-Projekte in C++ und Java hatte. Diese hatten lange Compile-Zeiten und
boten für die oft eingesetzte Nebenläufigkeit nur unkomfortable Lösungen.

Go ist statisch typisiert, kompiliert und bietet integrierte Unterstützung für Nebenläufigkeit über
sogenannte Goroutines, was sie besonders für netzwerk- und servernahe Anwendungen
prädestiniert. Die Syntax ist bewusst minimalistisch gehalten und verzichtet auf komplexe
Sprachfeatures wie klassische Vererbung.

Ein herausragendes Merkmal von Go ist das standardisierte Tooling: Das Kommandozeilenwerkzeug
go übernimmt nahezu den gesamten Build- und Dependency-Management-Prozess. Darüber hinaus
unterstützt das Tool auch Dokumentation, Testing, Formatting und Linting (Donovan & Kernighan,
2016), was in Programmiersprachen wie C, C++ oder Java über separates Tooling erledigt wird.
Abhängigkeiten werden über eine zentrale Datei (go.mod) verwaltet.

Das Paket-Ökosystem ist gut etabliert, mit einer Vielzahl an qualitativ hochwertigen Open-Source-
Bibliotheken für Bereiche wie Netzwerkkommunikation, Kryptographie und Webentwicklung
(Avelino & contributors, 2025). Gleichzeitig legt das Go-Design Wert auf eine starke
Standardbibliothek, sodass viele Anwendungsfälle ohne externe Abhängigkeiten realisierbar sind
(Donovan & Kernighan, 2016).

5.4.2. Rust
Rust ist eine systemnahe, kompilierte Programmiersprache, die seit 2009 von Mozilla Research
gesponsert und 2015 in Version 1.0 veröffentlicht wurde. Sie wurde mit dem Ziel entwickelt,
Speichersicherheit, Nebenläufigkeit und Performance miteinander zu vereinen, ohne auf Garbage
Collection angewiesen zu sein (Klabnik & Nichols, 2018).

Rust positioniert sich somit als moderne Alternative zu Sprachen wie C und C++, die in
sicherheitskritischen Bereichen (Betriebssysteme, Embedded, Netzwerkinfrastruktur) weit verbreitet
sind, aber bekannte Schwächen im Umgang mit Speicher und Nebenläufigkeit aufweisen.

Das zentrale Sprachmerkmal von Rust ist das innovative Speichermanagement ohne Garbage
Collector (Klabnik & Nichols, 2018). Statt automatischer Speicherbereinigung basiert Rust auf einem
Ownership-Modell mit Borrowing und Lifetimes. Der sogenannte Borrow-Checker analysiert zur
Compile-Zeit, ob Speicher korrekt genutzt wird und verhindert damit viele typische Fehler wie:
• Use-after-free
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• Null-Pointer-Dereferences
• Data Races

Dies führt zu hoher Sicherheit und sehr guter Laufzeit-Performanz, allerdings auch zu einer steileren
Lernkurve: Man muss die Konzepte von Ownership und Lifetimes beherrschen, um effizient mit Rust
zu arbeiten.

Rust verfügt mit cargo über ein modernes, integriertes Tooling-System für Paketverwaltung, Builds,
Tests und Dokumentation. Außerdem gibt es ein aktives Ökosystem, in dem zahlreiche qualitativ
hochwertige Bibliotheken verfügbar sind; von kryptografischen Werkzeugen über Webserver bis hin
zu Low-Level-Systembibliotheken.

5.4.3. Vergleich der Softwareverwaltung
Beide Sprachen bieten gutes Tooling für moderne Softwareentwicklung (Donovan & Kernighan,
2016; Klabnik & Nichols, 2018). Sowohl Go als auch Rust verfügen über eine Konfigurations-Datei
(go.mod bzw. cargo.toml), die deutlich leichtere Konfiguration als CMakeLists.txt oder Makefile
für C oder C++ ermöglichen.

Beide erlauben die einfache Einbettung von Libraries aus dem Internet.

5.4.4. Vergleich des Speichermanagements
Da die entstehende Library in Zukunft auch auf Smartphones und Laptops mit begrenzten
Speicherressourcen zum Einsatz kommen soll, ist eine Betrachtung des Speichermanagements und
damit der zu erwartenden Speichereffizienz und Performance sinnvoll.

Rust bietet den Vorteil, dass die Binaries keine Laufzeitumgebung für Garbage-Collection mitliefern
müssen, da das Speichermanagement manuell erfolgt (Klabnik & Nichols, 2018). Das manuelle
Speichermanagement geht allerdings mit einem höheren initialen Entwicklungsaufwand einher.

Go hingegen setzt auf einen Garbage-Collector, was zwar für die Laufzeit-Performanz nachteilig ist,
aber auch leichtere Software-Entwicklung erlaubt (Donovan & Kernighan, 2016).

5.4.5. Vergleich der Compile-Zeit
Um möglichst schnell Feedback zu Validität des Codes und Verhalten der zu entwickelnden Software
bekommen zu können, ist ein schneller Compiler wünschenswert.

Rust ist bekannt dafür, einen langsamen Compiler zu haben, da der Borrow-Checker komplexe
Analysen durchführen muss, um die Speichersicherheit der Programme zu verifizieren (The Rust
Project Contributors, 2025b).

Go hingegen wurde mit dem Ziel entwickelt, einen möglichst schnellen Compiler zu ermöglichen
(Pike, 2023).

5.4.6. Vergleich der Einbettung in mobile Apps
Da Securepoint mobile Apps entwickelt, ist das Tooling der Programmiersprachen zur Einbettung
von nativen Libraries in die Apps für Android und iOS relevant.

Go verfolgt mit gomobile und gobind einen Ansatz, bei dem die API einer Library automatisch aus
Go-Code generiert werden kann. Dieser ist dann im Code für Android- oder iOS-Apps aufrufbar
(Google LLC, 2025a). Securepoint hat in einer App bereits Go mit diesem Tooling eingesetzt
([Firmen-interne Quelle], Securepoint GmbH, 2025).

Rust verfolgt zwar einen ähnlichen Ansatz, ist aber manueller in der Umsetzung: Neben C-Headern
müssen relativ komplexe, in Rust geschriebene FFI-Bindings programmiert werden.
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5.4.7. Entscheidung
Aufgrund der begrenzten Zeit für eine Bachelorarbeit, der Erfahrung im Team mit Go sowie der zu
erwartenden Lernkurve habe ich entschieden, Go zu verwenden.

Im Bereich der Verwaltung von Software-Abhängigkeiten sind sich die beiden Sprachen recht
ähnlich.

Das Speichermanagement von Rust ist zwar für High-Performance-Anforderungen wünschenswert,
für die Nutzung in mobilen Apps hingegen würde der zusätzliche Aufwand im Speichermanagement
höchstwahrscheinlich die Entwicklung verzögern. Die schnelleren Compile-Zeiten von Go sind zwar
nicht strikt erforderlich, könnten aber den Entwicklungsworkflow positiv beeinflussen.

Nicht nur das Tooling von Go zur Einbettung in mobilen Apps ist für den potenziellen Einsatz
hilfreich. Auch die Erfahrung im Betrieb mit Go sollte die Integration zusätzlich vereinfachen.

6. Implementierung der Software
In diesem Kapitel wird die technische Umsetzung des OpenVPN-Clients in Go beschrieben. Ziel der
Implementierung ist es, die wesentlichen Funktionen der bestehenden Library schrittweise
nachzubilden und dabei eine saubere und nachvollziehbare Struktur zu schaffen.

Den Anfang macht die Test-Strategie, die zeigt, wie bereits während der Entwicklung durch Unit
Tests sichergestellt wird, dass zentrale Komponenten korrekt funktionieren. Darauf folgt die
Beschreibung der CI-Pipeline, die den automatisierten Test- und Build-Prozess unterstützt.

Im weiteren Verlauf wird der Konfigurations-Parser vorgestellt, der für das Einlesen und Verarbeiten
der OpenVPN-Konfigurationsdateien zuständig ist. Die Strukturierung der OpenVPN-Pakete bildet
die Grundlage für die Kommunikation mit dem Server. Anschließend werden die einzelnen Schritte
zur Verbindungsherstellung erläutert: der OpenVPN-Handshake, der TLS-Handshake sowie die
Aushandlung der Sitzungsparameter. Nach erfolgreichem Verbindungsaufbau übernimmt der Data-
Channel die Übertragung der Nutzdaten.

Außerdem werden die Probleme geschildert, die während der Entwicklung der einzelnen
Komponenten aufgetreten sind.

6.1. Test-Strategie
Um eine zügige und fehlerarme Entwicklung des Prototypen zu erleichtern, habe ich Tests als
zentralen Bestandteil der Entwicklung eingesetzt. Tests erlauben es, große Änderungen so
vorzunehmen, dass dabei auftretende Probleme früh erkannt und behoben werden können (Myers et
al., 2012).

Der aktuelle Fokus liegt auf Unit-Tests, die einzelne Komponenten und Funktionen isoliert testen.
Diese Tests decken zentrale Logik wie Konfigurationsverarbeitung und Paket-Verarbeitung ab.
Durch die frühe Integration von Unit-Tests kann die Korrektheit der Implementierung fortlaufend
überprüft werden. Dabei ist es gerade in der Prototyping-Phase leicht, die Architektur gut testbar zu
gestalten (Myers et al., 2012).

Langfristig ist geplant, die Testabdeckung durch End-to-End-Tests zu erweitern. Diese sollen
sicherstellen, dass die gesamte Bibliothek korrekt mit einem OpenVPN-Server interagiert und alle
Komponenten zuverlässig zusammenspielen. Während Unit Tests schnelle Rückmeldung bei
Änderungen am Code liefern, bieten End-to-End-Tests zusätzlich eine ganzheitliche Absicherung
gegen Integrationsfehler.

Dieses Vorgehen unterscheidet sich von der bisherigen Software-Lösung darin, dass bisher keine in
Software definierten Tests eingesetzt wurden ([Firmen-interne Quelle], Bastian Kummer, 2018).
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6.2. CI-Pipeline
Damit die Software-Tests möglichst oft, aber nicht nur manuell ausgeführt werden, habe ich eine CI-
Pipeline definiert. Die CI-Pipeline erlaubt eine regelmäßige Kontrolle, da sie nach jedem „Git-
Push“ (The Git Project Contributors, 2025) ausgeführt wird. In ihr wird zunächst eine Go-Build-
Umgebung konfiguriert. Danach wird die interne Anforderung geprüft, ob alle Quelltext-Dateien mit
einem Copyright-Hinweis beginnen. Dazu wird Googles addlicense-Tool genutzt. Im Anschluss
wird mit dem Befehl go build geprüft, ob aus dem Code erfolgreich eine Binary kompiliert werden
kann. Nach der Ausführung der in Software definierten Tests, deren Ergebnisse gespeichert werden,
wird der Go-Formatter (go fmt) ausgeführt, der den Code auf einheitliche Einrückung und andere
Formatierung prüft. Zum Schluss wird noch mit golint auf häufige Programmierfehler und die
Einhaltung von Programmier-Konventionen geprüft. Listing 11 zeigt einen Auszug aus der ci.yml-
Datei, die das beschriebene Verhalten konfiguriert:

yaml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

on: [ push ]

jobs:
  check_license-build-test-format-lint:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Setup Go
        uses: actions/setup-go@v5
        with:
          go-version: "1.24.x"
      - name: Install addlicense
        run: go install github.com/google/addlicense@latest
      - name: Check license
        run: addlicense -check -l mit -s -c "Securepoint GmbH" .
      - name: Build project
        run: go build
      - name: Run project tests
        run: |
                set -o pipefail
                go test ./... -v -json | tee TestResults.json
      - name: Upload Go test results
        uses: actions/upload-artifact@v4
        with:
          name: Go-Test-Results
          path: TestResults.json
      - name: Format Go code
        run: gofmt -l .
      - name: Install golint
        run: go install golang.org/x/lint/golint@latest
      - name: Run golint
        run: golint -set_exit_status ./...

Listing 11: GitHub-Actions-Skript ci.yml zur Qualitätsüberprüfung des Quellcodes

6.3. Schnittstellenimplementierung
Die Implementierung der Schnittstelle war ein anfängliches Unterfangen, da es den Einstiegspunkt
in die Software-Bibliothek definiert. Dieser Einstiegspunkt sowie die anderen Schnittstellen-
Funktionen werden von der main.go-Datei genutzt. Die main.go definiert den Einstiegspunkt in das
Programm und ist der in diesem Projekt genutzte Client für die definierte API und die dahinter
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stehende Implementierung. Anders als bei der bisherigen Implementierung ist hier die gesamte
Schnittstelle in einer einzigen Datei definiert (Listing 12).

Connect() nimmt eine OpenVPN-Konfiguration als String entgegen und parst daraus ein struct
Options, das die unterstützten Konfigurationsoptionen enthält. Es wird geprüft, ob die geparsten
Optionen valide sind und dann der Verbindungsaufbau begonnen. Schlägt ein Funktionsaufruf fehl,
wird false zurückgeben, anderenfalls true. Das kann z. B. beim Verbindungsaufbau passieren.
Disconnect() stoppt den Client. Dabei werden Socket und TUN-Device geschlossen. Schlägt ein
Funktionsaufruf fehl, wird false zurückgeben, anderenfalls true. Das kann z. B. bei dem Schließen
eines Sockets auftreten.
InBytes() gibt die vom UDP- oder TCP-Socket empfangenen Bytes zurück. OutBytes() gibt die
über den UDP- oder TCP-Socket gesendeten Bytes zurück.
SetLogHandler() setzt eine Funktion als Logger. Die Funktion bekommt ein LogLevel (Debug, Info,
Warn oder Error), sowie eine Log-Nachricht als String übergeben. Sie muss nicht verwendet werden:
Es gibt einen Logger, der auf stdout schreibt. Über den LogLevel kann man z. B. Debug-Nachrichten
verwerfen. Um aber zu verhindern, dass es kein Logging gibt, kann hier kein „nil“-Logger gesetzt
werden.

go

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

func Connect(config string) bool {
  opt, err := options.ParseOptionsFromString(config)
  if err != nil {
    dbg.Errorf("Failed to parse options: %s", err)
    return false
  } else if !opt.IsValid() {
    dbg.Errorf("Invalid options")
    return false
  }
  return ovpnclient.Run(*opt)
}

func Disconnect() bool {
  return ovpnclient.Stop()
}

func InBytes() uint64 {
  return ovpnclient.InBytes()
}

func OutBytes() uint64 {
  return ovpnclient.OutBytes()
}

func SetLogHandler(handler func(level dbg.LogLevel, message string)) {
  if handler != nil {
    dbg.SetMsgHandler(handler)
  }
}

Listing 12: Verkürzter Auszug aus libovpn-client.go

6.4. Konfigurations-Parser
Der Konfigurations-Parser orientiert sich stark an der internen Originalimplementierung. Die
Konfigurationsdatei wird zeilenweise gelesen; das erste Wort bestimmt, welche Funktion zum Parsen
der restlichen verwendet wird. Eine Ausnahme bilden hier die Zertifikate und Keys, die mehrzeilig
sein können, wenn z. B. statt cert <cert> das erste Wort ist. In dem Fall wird der Modus des Parsers
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gewechselt und alle Zeilen von z. B. <cert> bis </cert> in einem String der geparsten Konfiguration
gespeichert. Worauf ich hier verzichtet habe, ist die Validierung der Zertifikate oder das direkte
Parsen in ein Go x509.Certificate. Zertifikatsdateien sind wahrscheinlich fast immer von
Maschinen generiert, weshalb die Validierung nicht so dringlich ist. Die Validierung ließe sich aber
ergänzen, wenn es denn gewünscht wird.

Ein wesentlicher Unterschied ist, dass Domains für remote (Server) aufgelöst und alle IP-Adressen
sofort validiert werden. Dazu wird auf die Go-Standard-Library zurückgegriffen, die Funktionen für
diesen Zweck bereitstellt. Das hat den Vorteil dass im restlichen Programm nur valide IP-Adressen
behandelt werden müssen: Eine Fehlerquelle fällt weg.

Ein kleinerer Unterschied ist die Aufteilung in kleinere Komponenten, was sich in modernen
Programmiersprachen wie Go anbietet: options.go enthält das struct und seine Methoden wie
IsValid, während der Parser in parse.go definiert wird. Damit werden Funktionalitäten in kleinere,
besser überschaubare Bereiche strukturiert.

Es gibt außerdem Software-Tests, die den Parser mit verschiedenen Konfigurationen auf korrekte
Funktion überprüfen können. Komplexere Subkomponenten werden separat mit eigenen Unit-Tests
geprüft, ansonsten wird der gesamte Parser als Einheit getestet. Dieses Vorgehen limitiert den
Implementierungs- und Maintenance-Aufwand für die Tests, ohne die komplexeren und somit
fehleranfälligen Funktionen in den Tests zu vernachlässigen.

6.5. Strukturierung der OpenVPN-Pakete
OpenVPN-Pakete haben je nach Verbindungszustand und Inhalt unterschiedliche Strukturen (vgl.
Abschnitt 3). Um Pakete zu verarbeiten, werden sie anhand ihres Opcodes erkannt und zu einem
struct deserialisiert. Zu verschickende Pakete halten ihre Daten in einem struct, auf das eine
Bytes-Methode definiert ist. Diese Methode nutzt die Daten des struct, um daraus ein OpenVPN-
Paket als Byte-Array zu serialisieren. Diese Bytes können dann über die Verbindung zum Server
verschickt werden.

Listing 13 illustriert ein vom Client zu verschickendes Paket anhand des initialen
CONTROL_HARD_RESET_CLIENT_V2-Pakets. Das struct (Zeilen 1 bis 3) hält die Daten, in diesem Fall
nur die eigene Session-ID. Die Bytes-Methode serialisiert für das HardResetClientV2Packet p ein
Byte-Array. Als erstes werden der Opcode und die Key-ID (hier 0, da es noch keine Keys gibt) in den
Byte-Buffer geschrieben (Zeile 7). Danach werden die eigene Session-ID, die Anzahl von ACKs im
Paket (hier immer 0), sowie die Packet-ID (hier immer 0) in den Buffer geschrieben (Zeilen 8 bis 10).

Es bietet sich auch hier wieder an, auf die Go-Standard-Library zurückzugreifen. Sie bietet eine
Buffer-Implementierung, die der in der internen Originalimplementierung in C recht ähnlich ist. So
lässt sie sich anstatt einer eigenen Implementierung verwenden, womit der Implementierungs- und
Maintenance-Aufwand reduziert wird. Außerdem kann man davon ausgehen, dass die offizielle
Implementierung von hoher Qualität und gut getestet ist, wodurch ihre Verwendung das
Fehlerpotenzial senkt.
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go

1
2
3
4
5
6
7
8
9
10
11
12

type HardResetClientV2Packet struct {
  OwnSessionID SessionID
}

func (p HardResetClientV2Packet) Bytes() []byte {
  buf := bytes.Buffer{}
  buf.WriteByte(OpcodeKeyIDByte(byte(PControlHardResetClientV2), 0))
  buf.Write(p.OwnSessionID.Bytes())
  buf.WriteByte(0)              // 1 byte for acked packet IDs length
  buf.Write([]byte{0, 0, 0, 0}) // 4 bytes for packet ID
  return buf.Bytes()
}

Listing 13: Definition eines OpenVPN-Hard-Reset-Paket vom Client in Go

Listing 14 zeigt die Implementierung der Antwort auf einen Client-Hard-Reset. Das vom Client
empfangene CONTROL_HARD_RESET_SERVER_V2-Paket muss zunächst geparst werden. Das wird in
ParseHardResetServerV2Packet implementiert. Die Funktion deserialisiert einen Buffer, indem es
Bytes nach dem erwarteten Aufbau liest und interpretiert. Tritt ein Fehler auf, wird statt eines
HardResetServerV2Packet nur ein error zurückgegeben. Die Rückgabe in dem Format eines Tupels
aus erwarteter Rückgabe und Error ist dabei typisch für Go. Darüber wird explizites Error-Handling
erzwungen, wie man in Zeile 14 sehen kann. Dort führt ein erkannter Fehler sofort zur Beendigung
der Funktion und die aufrufende Funktion muss den aufgetretenen Fehler behandeln. Tritt kein
Fehler auf, wird am Ende der Funktion ein Pointer auf das in Zeilen 1 bis 7 definierte struct
zurückgegeben. Dieses struct kann dann genutzt werden. In diesem Fall wird es als Teil des
OpenVPN-Handshakes acknowledged (vgl. Abbildung 6).
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type HardResetServerV2Packet struct {
  KeyID           uint8
  RemoteSessionID *SessionID
  AckedPacketIDs  []PacketID
  OwnSessionID    *SessionID
  RemotePacketID  PacketID
}

func ParseHardResetServerV2Packet(packet []byte) (*HardResetServerV2Packet,
error) {
  buffer := bytes.NewBuffer(packet)
  // keyID und remoteSessionID dem Buffer entnehmen...
  ackedPacketIDsLength, err := buffer.ReadByte()
  if err != nil {
    return nil, err
  }
  // ackedPacketIDs, ownSessionID und remotePacketID dem Buffer entnehmen
  parsed := &HardResetServerV2Packet{
    // struct wird mit den geparsten Werten befüllt
  }
  return parsed, nil
}

Listing 14: Gekürzte Definition eines OpenVPN-Hard-Reset-Paket vom Server in Go
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6.6. OpenVPN-Handshake
Der OpenVPN-Handshake wurde in der internen Originalimplementierung mit einer State-Machine
abgebildet. Das hat die Nachvollziehbarkeit im Code leider eher verschlechtert, da Funktionsaufrufe
über Zustände und Handler-Matrix (vgl. Listing 6, Listing 7) und nicht explizit erfolgen. Deshalb hat
die Go-Implementierung einen anderen Ansatz verfolgt: Statt über Zustände wurde der Kontrollfluss
explizit definiert. Jeder Funktionsaufruf folgt auf den vorangegangen, statt in einem Main-Loop über
das weitere Vorgehen zu entscheiden. Dieser Ansatz ist meines Erachtens nach besser lesbar. Es
besteht die Gefahr, dass er nicht so gut skaliert wie der Ansatz mit Funktionsmatrix. Für einen
Prototypen ist diese Architektur aber ausreichend.

Listing 15 zeigt den OpenVPN-Handshake in dieser expliziten Implementierung. Der Handshake
wird vom Client initiiert (Zeile 2), wonach auf eine Antwort vom Server gewartet wird (Zeilen 3 und
4). Bei Empfang einer Antwort wird das Paket geparst (Zeile 8), seine Session-ID gespeichert und die
Packet-ID in einer Liste ergänzt (Zeilen 12 und 13). Danach wird ein Acknowledgement-Paket für
die Server-Antwort verschickt (Zeile 14).
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func (s *Session) Handshake() error {
  s.SendHardReset()
  packet := make([]byte, 2048)
  _, err := s.ReaderWriter.Read(packet)
  if err != nil {
    return err
  }
  parsed, err := packets.ParseHardResetServerV2Packet(packet)
  if err != nil {
    return err
  }
  s.RemoteSessionID = *parsed.RemoteSessionID
  s.AddUnacked(parsed.RemotePacketID)
  err = s.SendAck()
  if err != nil {
    return err
  }
  return nil
}

Listing 15: Vereinfachte Darstellung der OpenVPN-Handshake-Implementierung in Go

Die Session, die den Handshake durchführt, enthält dabei eine conn.OVPNConn (Listing 16), die
net.Conn aus der Go-Standard-Library erweitert. net.Conn stellt Lese- und Schreibmethoden für
unter anderem UDP- und TCP-Sockets in Go bereit. conn.OVPNConn kann auf einer UDP- oder TCP-
Verbindung aufbauen. Es abstrahiert das OpenVPN-Framing für TCP-Verbindungen, indem es
Pakete mit einem Längen-Präfix versieht (vgl. Tabelle 1). Außerdem erhebt eine conn.OVPNConn die
Menge der Bytes, die empfangen und gesendet werden.

go
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type OVPNConn interface {
  net.Conn
  GetInBytes() uint64
  GetOutBytes() uint64
}

Listing 16: Definition der conn.OVPNConn, die für UDP und TCP implementiert wird
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6.7. TLS-Handshake
Bei dem Aufbau der TLS-Session, über die der Control-Channel die Verbindungsparameter
austauschen sollte, kam es leider zu Problemen bei der Implementierung.

Zunächst war die Konstruktion der Verbindung eine Herausforderung, die sich aber bewältigen ließ.
Das Problem bestand darin, dass der TLS-Handshake im OpenVPN-Protokoll in OpenVPN-Pakete
mit einem entsprechenden Header für Opcodes und andere Informationen gekapselt werden muss.
Dazu habe ich eine eigene Go net.Conn implementiert, die dieses Verhalten unterstützt:
CtrlChannelConn in Listing 17 dient zur Übertragung von CONTROL_V1-Paketen, und unterstützt das
Empfangen und Senden von Acknowledgements in den Paketen. Das struct CtrlChannelConn
implementiert eine conn.OVPNConn, die eine Go net.Conn implementiert (vgl. Listing 16). Außerdem
wird der Traffic über die CtrlChannelConn in Control-Channel-Pakete eingekapselt. Dazu wurden
die Methoden Read und Write überschrieben.
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type CtrlChannelConn struct {
  conn.OVPNConn
  session *Session
}

func (c *CtrlChannelConn) Read(b []byte) (int, error) {
  n, err := c.session.ReaderWriter.Read(b)
  if packets.OpcodeFromByte(b[0]).IsAck() {
    return n, nil
  }
  packet, err := packets.ParseUnauthenticatedControlPacket(b[:n])
  if err != nil {
    return 0, err
  }
  if packets.OpcodeFromByte(b[0]).IsControl() { // ACKs MUST NOT be acknowledged
    c.session.AddUnacked(packet.OwnPacketID)
    err = c.session.SendAck()
  }
  copied := copy(b, packet.Payload)
  return copied, err
}

func (c *CtrlChannelConn) Write(b []byte) (int, error) {
  packet := packets.NewUnauthenticatedControlPacket(
    0, // keyID
    c.session.OwnSessionID,
    c.session.PopUnacked(),
    c.session.RemoteSessionID,
    c.session.LastSentPacketID+1,
    b,
  )
  c.session.LastSentPacketID++
  return c.session.OVPNConn.Write(packet.Bytes())
}

Listing 17: Auszug der Implementierung CtrlChannelConn in Go

Dieser Datentyp sollte dann als net.Conn von der TLS-Implementierung der Go-Standard-Library
zum Aufbau einer TLS-Verbindung genutzt werden können:
tls.Client(ctrlChannelConn, tlsConfig).
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Leider hat der TLS-Handshake aber weder über TCP noch über UDP erfolgreich funktioniert. Es gibt
stattdessen die Fehler „error: failed to authenticate over TLS: local error: tls: bad
record MAC“ und „failed to authenticate over TLS: unexpected EOF“, anderenfalls hängt sich
die Verbindung beim Lesen auf.

Ich habe die Vermutung, dass nicht alles Relevante zum TLS-Handshake in Schwabe (2016) steht.
Der Versuch, die Paket-Größe zu limitieren, hat das Problem nicht behoben. Dieser Workaround
wurde in der internen Originalimplementierung verwendet ([Firmen-interne Quelle], Bastian
Kummer, 2018). Meine Vermutung ist, dass der TLS-Handshake nicht einfach über den tls.Client
der Go-Standard-Library ausgeführt werden kann, auch wenn der Handshake in Control-Channel-
Paketen gekapselt ist. Eventuell könnte uTLS Abhilfe schaffen. uTLS ist ein Fork des crypto/tls-
Pakets der Go-Standard-Library. Es bietet tieferen Zugriff auf die Komponenten, sodass man damit
vielleicht die TLS-Records in den Paketen besser kontrollieren kann (Refraction Networking, 2025).
uTLS findet auch bei dem in Go geschriebenen OpenVPN-Client des Open Observatory of Network
Interference (2025) Verwendung. Dann könnte man das Verhalten im Kapitel „Control message
framing“ von Schwabe (2016) exakt abbilden.

Aufgrund dieser Probleme habe ich die darauf folgenden Komponenten entwickelt, auch wenn sie
sich ohne Control-Channel nicht testen ließen.

6.8. Aushandlung der Sitzungsparameter
Die Modellierung der Authentisierung (Listing 18) mit Nutzername und Passwort sowie die
Aushandlung der Sitzungsparameter entspricht der Definition in Tabelle 4. Der Options-String ist
dabei aus der Originalimplementierung übernommen. Hier gibt es wieder die Aufteilung in
Datenhaltung in einem struct und eine Bytes-Methode, mit der die Nachricht serialisiert werden
kann. Aus den Strings werden in EncodeStringBytes Byte-Arrays generiert, die in den ersten zwei
Byte ihre Länge enthalten und mit einem Null-Byte enden.
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type AuthMessage struct {
  KeyRandom KeyRandom
  Username  string
  Password  string
  PeerInfo  string
}

func (authMsg *AuthMessage) Bytes() []byte {
  buf := bytes.Buffer{}
  buf.Write(make([]byte, 4))
  buf.WriteByte(0x02) // "key_method2_write"
  buf.Write(authMsg.KeyRandom.Bytes())
  buf.Write(packets.EncodeStringBytes("V0 UNDEF")) // options string
  buf.Write(packets.EncodeStringBytes(authMsg.Username))
  buf.Write(packets.EncodeStringBytes(authMsg.Password))
  buf.Write(packets.EncodeStringBytes(authMsg.PeerInfo))
  return buf.Bytes()
}

Listing 18: Auszug aus authmessage.go

Die Peer Info wird dabei analog zur Originalimplementierung in Go erzeugt (Listing 19). Der einzige
Unterschied ist in platform.GetPlatform(). Während die Originalimplementierung den C-
Präprozessor direkt in der Funktion nutzt, wird die Abfrage der Plattform bei Go in
plattformspezifischen Dateien hinterlegt. Damit lässt sich die Plattform-Unterstützung nach und
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nach ausbauen, die unterschiedlichen Implementierungen sind aber in einzelne Dateien getrennt.
Diese werden vom Go-Compiler nach dem Namensschema „name_plattform.go“ erwartet, in
diesem Beispiel also platform_android.go, platform_darwin.go (iOS und macOS),
platform_freebsd.go, platform_linux.go und platform_windows.go.
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func PeerInfo(ciphers string) string {
  return fmt.Sprintf(
    "IV_PLAT=%s\nIV_VER=0.1\nIV_PROD=sp-ovpn\nIV_NCP=2\nIV_CIPHERS=%s\n",
    platform.GetPlatform(),
    ciphers,
  )
}

Listing 19: Auszug aus peerinfo.go

Das Parsen der Antwort auf eine AuthMessage erfolgt nach dem Schema wie es in Listing 14
präsentiert ist, nur eben für den Inhalt von Tabelle 4. Es wird der darin vom Server genannte
Verschlüsselungsalgorithmus für den Data-Channel genutzt.

6.9. Data-Channel
Der Data-Channel modelliert das Senden und den Empfang der Pakete. Er ver- und entpackt sie und
ver- und entschlüsselt sie. Da die Kapselung mit Bytes-Methoden und Parse-Funktionen bereits
erörtert wurden (vgl. Listing 13 und Listing 14), liegt der Fokus im Folgenden auf der
Verschlüsselung und der Interaktion des Data-Channels mit dem Betriebssystem.

Um eine möglichst einheitliche Nutzung der verschiedenen Verschlüsselungsalgorithmen zu
ermöglichen, habe ich alle unterstützten Algorithmen mit dem folgenden struct dargestellt
(Listing 20). Das struct besteht dabei aus dem Namen, unter dem der Verschlüsselungsalgorithmus
im OpenVPN-Protokoll bekannt ist (vgl. Tabelle 5), der KeySize und NonceSize, die zur Ver- und
Entschlüsselung mit entweder NewAEAD oder NewBlock dienen. Das ist abhängig von der Art des
Algorithmus, der in IsAEAD definiert wird.
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type CipherSpec struct {
  Name      string
  KeySize   int
  NonceSize int
  IsAEAD    bool
  NewAEAD   func(key []byte) (cipher.AEAD, error)  // only for AEAD modes
  NewBlock  func(key []byte) (cipher.Block, error) // only for non-AEAD modes
}

Listing 20: Auszug aus ciphers.go

Damit ließen sich die empfohlenen und optionalen Algorithmen aus Tabelle 5 in einer Map abbilden.
Um die Algorithmen einzusetzen, sind Funktionen mit den folgenden Funktionssignaturen definiert
(Listing 21). Die ersten beiden Zeilen zeigen dabei die Funktionssignaturen der Chiffren, die separate
Authentifizierung benötigen (AES-CBC), während die unteren beiden Funktionen für die AEAD-
Chiffren verwendet werden. Diese Funktionen erlauben zusätzlich „Additional Authenticated
Data“ (hier aad) und benötigen den „Authentication Tag“ (hier tag), der für zum Nachweis der
Authentizität und der Integrität benötigt wird. Die Signaturen der Funktionen sind gut vergleichbar
mit denen aus Listing 8:
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1
2
3
4
5

func EncryptBlock(block cipher.Block, iv, input []byte) ([]byte, error)
func DecryptBlock(block cipher.Block, iv, input []byte) ([]byte, error)

func EncryptAEAD(aead cipher.AEAD, iv, plain, aad []byte) (cipher, tag []byte, error)
func DecryptAEAD(aead cipher.AEAD, iv, cipher, aad, tag []byte) ([]byte, error)

Listing 21: Funktionssignaturen der Verschlüsselungsfunktionen in Go

Bisher wurden bei der Implementierung Control-Channel-Pakete behandelt, oder Data-Channel-
Pakete in ihrer Verarbeitung erklärt. Sockets und net.Conn aus der Go-Standard-Library wurden
erwähnt, nicht aber die TUN-Devices, die Herkunft oder Ziel der IP-Pakete auf Client-Seite sind (vgl.
Abbildung 5, Abbildung 7). Sie bilden die Systemgrenze zwischen Betriebssystem und OpenVPN-
Client-Software. Um TUN-Devices in Go zu verwenden, kann man die Library water nutzen.
water verwaltet TUN- und TAP-Devices für Linux, macOS und Windows. Der Vorteil dieser Library
ist, dass sie plattformabhängigen Code über eine einheitliche Programmierschnittstelle bereitstellt
(Gao, 2020). Die interne Library in C hat dies hingegen selbst implementieren müssen. In Listing 22
ist eine verkürzte Version der TUN-Device-Konfiguration und die dazugehörige Open-Methode
dargestellt, die damit ein TUN-Device öffnet. Die Funktionen setMtu, setAddresses und setRoutes
setzen die entsprechenden Werte für das TUN-Device mithilfe von Shell-Commands wie route und
ifconfig. Für das in Open ungenutzte Feld DNSServers fehlt einfach noch die entsprechende
Konfigurationsfunktion. Da „interface“ in Go ein Keyword der Programmiersprache ist wird das
water.Interface „ifce“ genannt.
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type Config struct {
  Mtu           uint16
  Addresses     []netip.Prefix
  Routes        []InetRoute
  DNSServers    []netip.Addr
}

func (cfg *Config) Open() (*water.Interface, error) {
  ifce, err := water.New(water.Config{
    DeviceType:             water.TUN,
    PlatformSpecificParams: water.PlatformSpecificParams{},
  })
  if err != nil { return nil, err }
  err = setMtu(ifce.Name(), cfg.Mtu)
  if err != nil { return nil, err }
  err = setAddresses(ifce.Name(), cfg.Addresses)
  if err != nil { return nil, err }
  err = setRoutes(cfg.Routes)
  if err != nil { return nil, err }
  return ifce, nil
}

Listing 22: Auszug aus tun.go

Das water.Interface bietet Read- und Write-Methoden, wie eine net.Conn, um Pakete zu
empfangen und zu senden. Die weitere Konfiguration von TUN-Devices unterstützt die water-
Bibliothek nicht. Die Konfiguration erfolgt daher über Befehle wie „ifconfig“ und „route“. Diese
Befehle sind nicht plattformübergreifend einheitlich. Der route-Befehl auf Linux funktioniert zum
Beispiel anders als auf macOS: Während Linux IPv4 und IPv6 dort mit „-4“ und „-6“ differenziert,
wird dies unter macOS mit „-inet“ und „-inet6“ erreicht. Diese Unterschiede wurden daher
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plattformspezifisch z. B. in tun_linux.go und tun_darwin.go implementiert. Dadurch bleibt die
Software plattformübergreifend einsetzbar.

Anders als die Desktop-Betriebssysteme erzeugen und verwalten Android und iOS ihre TUN-
Devices selbst. Anwendungen haben über Programmierschnittstellen indirekten Zugriff auf sie.
Einerseits ist das sicherer, da es keinen Root-Zugriff oder Rechte zur Erzeugung eines TUN-Devices
für die Anwendung erfordert, andererseits müssen Clients für diese Plattformen besondere,
plattformspezifische Lösungen implementieren. Zur Vollendung der Implementierung dieser
OpenVPN-Library wäre dieses Feature für Securepoint wichtig, es übersteigt aber den Rahmen
dieser Bachelorarbeit.

7. Vergleich der Implementierungen
Zur Bewertung des im Rahmen dieser Arbeit entwickelten Go-Prototyps muss ein strukturierter
Vergleich mit der C-basierten OpenVPN-Client-Bibliothek vorgenommen werden. Ziel ist es, Stärken
und Schwächen der Implementierungen, insbesondere im Hinblick auf Wartbarkeit und Leistung
herauszuarbeiten. Da der Go-Prototyp zum Zeitpunkt der Analyse noch nicht vollständig
implementiert ist, liegt der Schwerpunkt nicht auf einem Funktionsvergleich oder auf Performance-
Messungen, sondern auf qualitativen Aspekten der Softwareentwicklung.

7.1. Erfüllung der Anforderungen
Die bestehende Implementierung erfüllt alle primären funktionalen Anforderungen. Auch die
optionalen Anforderungen des „Soft-Reset“ (Funktionale Anforderung 6) und „TLS-Auth“
Funktionale Anforderung 7 sind erfüllt. Allein „TLS-Crypt“ (Funktionale Anforderung 8) ist nicht
implementiert.

Der Prototyp hingegen ist unvollständig. Es können zwar Konfigurationen und Konfigurations-
Dateien eingelesen werden (Funktionale Anforderung 1), aber schon der Handshake ist nur
unvollständig implementiert (Funktionale Anforderung 2). Das hat auch die Datenübertragung über
den Client beeinflusst (Funktionale Anforderung 3): Teile der Implementierung sind fertig, sie sind
aber nicht vollständig, da dort die Integration ohne Funktionale Anforderung 2 nicht möglich war.
Die Umsetzung der plattformspezifischen Features ist zwar nicht vollständig, aber die Infrastruktur
ist implementiert (Funktionale Anforderung 4). Die Konfiguration der TUN-Devices ist zumindest
für Linux und macOS möglich (Funktionale Anforderung 5). Die Schnittstellenimplementierung
wurde wie in Abschnitt 5.2 beschrieben umgesetzt (vgl. Listing 12).

7.2. Qualitative Analyse
Ein sinnvoller Vergleich von Software erfordert mehr als einen reinen Funktionsabgleich. Da der
Prototyp nicht fertiggestellt werden konnte, sollen zunächst Kriterien wie Testbarkeit sowie die
Komplexität und Struktur des Codes berücksichtigt werden. Diese Bewertung erfolgt hauptsächlich
anhand qualitativer Einschätzungen.

7.2.1. Build-Tooling
Sowohl C als auch Go verfügen über schnelle Compiler, es gibt aber dennoch Qualitätsunterschiede
in den Standard-Toolchains der beiden Sprachen (Pike, 2023; The Rust Project Contributors, 2025b).
Diese Unterschiede möchte ich im Folgenden erörtern.

Go bietet simples und modernes Build-Tooling, was die Verwendung von externen Abhängigkeiten
für beispielsweise Kryptografie oder die Verwendung von TUN-Devices sehr einfach ermöglicht. Es
sind außerdem der Formatter mit go fmt, ein Linter mit go vet und eine Testumgebung mit go test
direkt in dem Compiler integriert, wodurch ihre händische Installation und Konfiguration entfällt.
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Auch ist die go.mod (Listing 23) als Projektverwaltungsdatei übersichtlich, explizit und funktioniert
unabhängig vom Betriebssystem, anders als die Makefile der C-Bibliothek (vgl. Listing 10):

go
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module golang-vpn

go 1.24

require (
  github.com/songgao/water v0.0.0-20200317203138-2b4b6d7c09d8
  golang.org/x/crypto v0.40.0
)

require golang.org/x/sys v0.34.0 // indirect

Listing 23: Komplette go-mod-Datei des Prototyps

Die Abhängigkeiten lassen sich über die Kommandozeile mit z. B. go get github.com/songgao/
water hinzufügen und mit go get -u all auf die neueste Version aktualisieren. Hingegen muss
OpenSSL für die C-Bibliothek entweder auf Desktop-Betriebssystemen vorinstalliert sein oder auf
mobilen Plattformen separat kompiliert und in die Apps integriert werden. Dadurch ist jede
Aktualisierung der OpenSSL-Abhängigkeit in den Apps ein manueller Prozess, der Minuten und bis
zu einer Stunde in Anspruch nimmt, je nach dem, wie schnell die OpenSSL-Library kompiliert wird.
Während man aber bei der C-Bibliothek noch OpenSSL-Shared-Libraries zum Betrieb benötigt,
konstruiert der Go-Compiler eine einzelne, alles enthaltende Binary.

Bei der Einbettung der neuen Go-Implementierung in mobile Apps wäre zu erwarten, dass dies
leichter ist als mit der bestehenden Lösung: Die Anbindung der Bibliothek an Apps für Android und
iOS wird von gomobile fast komplett automatisiert (Google LLC, 2025a) und wurde bei Securepoint
bereits erfolgreich eingesetzt ([Firmen-interne Quelle], Securepoint GmbH, 2025).

7.2.2. Lines of Code
Die Anzahl an Code-Zeilen eines Projekts sind zwar nicht unbedingt eine verlässliche Metrik, aber
dafür sehr leicht zu erheben. Gerade bei unterschiedlichen Programmiersprachen ist die
Vergleichbarkeit aber nicht unbedingt gegeben. Trotzdem kann die Metrik Aufschluss über die
Komplexität und damit die Wartbarkeit der Software geben, wenn der Unterschied besonders groß
ist. Dabei ist eine kleine Anzahl Zeilen erstrebenswert, weil tendenziell weniger Fehler auftreten
können. Um die in Abbildung 8 gezeigten Werte zu ermitteln, wurde das Tool cloc verwendet, das
mit der Zählung von Code-Zeilen, Leerzeilen und Kommentarzeilen eine um diese Werte bereinigte
Analyse der Lines of Code ermöglicht (Danial, 2025).
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Abbildung 8: Lines of Code in den Projekten, bereinigt um Leer- und Kommentarzeilen

Der Prototyp ist noch nicht fertig implementiert, weshalb er bei dieser Messung einen Vorteil hat.
Deswegen hat er mit 2940 Zeilen eine geringere Anzahl an Zeilen als die bestehende Lösung mit
5210 Zeilen. Erst wenn beide Implementierungen dieselben Features bieten, ist der Vergleich
aussagekräftiger. Der Trend zum jetzigen Zustand ist aber vielversprechend und spricht eher für den
Prototypen. Ich würde davon ausgehen, dass noch maximal 2000 Zeilen für die Unterstützung aller

45



Features der Originalimplementierung erforderlich sein werden. Der Umfang der bestehenden
Software-Lösung ist im Vergleich also auch nicht schlecht.

7.2.3. Vorteile der Go-Standard-Library
Ein Punkt, der für den Prototypen spricht, ist die Tatsache, dass deutlich mehr Komponenten von
Software-Abhängigkeiten wie der Go-Standard-Library implementiert sind. So wurden buffer.c
und buffer.h nicht zu Go portiert, sondern bytes.Buffer aus der Standard-Bibliothek verwendet.
Die interne Implementierung in der C-Bibliothek hingegen ist durch Instabilität negativ aufgefallen
(vgl. Listing 1 und [Firmen-interne Quelle] (2024)). Außerdem verfügt die Go-Standard-Library über
Funktionen, die Daten wie z. B. IP-Adressen und X.509-Zertifikate validieren können, sowie über
leicht nutzbare APIs für Netzwerkverbindungen, Textverarbeitung und Kryptografie (Donovan &
Kernighan, 2016).

7.2.4. Abstraktionen
Die Methoden in Listing 13 und Listing 14 strukturieren den Code im Prototypen für die
verschiedenen OpenVPN-Paket-Typen, wohingegen die bestehende Implementierung mit
ovpn_link_write, ovpn_link_read und ovpn_parse_frame alle unterschiedlichen Paket-Typen über
die selben Funktionen serialisieren und deserialisieren. Diese Entscheidung resultiert in langen,
unleserlichen Funktionen, die die Wartbarkeit verschlechtern (Khan et al., 2006).

7.2.5. Software-Tests
Ein klarer Vorteil für den Prototypen ist die Existenz von Software-Tests. Sie erlauben es,
automatisiert Fehler in Programmen zu finden (Myers et al., 2012). Aktuell sind 105 verschiedene
Test-Cases definiert, der Großteil für den Konfigurations-Parser und die Serialisierung und
Deserialisierung der OpenVPN-Pakete. Die Code-Coverage, also der Anteil am Programm-Code, der
bei Tests ausgeführt wird, liegt nach go test ./... -cover bei 74.6% für De-/Serialisierung der
Pakete, bei 43.8% für den Konfigurations-Parser und für Kryptografie bei 56.1%. Manche
Komponenten haben gar keine Tests. Allerdings ist Code-Coverage unter Kritik, da die Zahlen oft
nicht aussagekräftig sind und sich manipulieren lassen (Borenkraout, 2024).
Das Testen von kritischen Komponenten, wie der De-/Serialisierung von Paketen, hilft bei der
Erkennung von z. B. Regressionen (Myers et al., 2012). Die Originalimplementierung verfügt nicht
über Software-Tests, wodurch Fehler leichter unentdeckt bleiben können und dann erst bei
Ausführung auftreten, beispielsweise auf Kundengeräten.

7.3. Größe der Binary
Da die Libraries unter anderem auf Smartphones eingesetzt werden sollen, sollten sie keine zu
großen Binaries produzieren.

Die Binary-Dateien der beiden Clients sind nicht direkt vergleichbar, da Go eine einzelne Datei
erzeugt, während die C-Bibliothek externe Abhängigkeiten nutzt. libopenvpn-lib.so selbst ist
287.040 Byte groß, aber zusammen mit C-Standard-Library libc++_shared.so (1.794.776 Byte),
sowie libcrypto.so (4.260.232 Byte) und libssl.so (687.520 Byte) von OpenSSL kommt man auf
ca. 7 Megabyte. Die Library des Prototypen, libgolang-vpn.so, ist ca. 5 Megabyte groß (4.795.490
Byte). Damit ist die Library des Prototypen tatsächlich kleiner als die der Originalimplementierung,
wenn man ihre Abhängigkeiten in der Berechnung berücksichtigt.
Ich finde dieses Ergebnis recht überraschend, da die Shared Library des Prototypen eine Runtime für
Garbage-Collection enthalten muss. Andererseits kann Go eventuell ungenutzte Funktionen der
Abhängigkeiten entfernen, während die die Implementierung in C die vollständigen Shared-
Libraries der Abhängigkeiten benötigt. Beide Libraries haben vertretbare Größen, die z. B. das Limit
des Google Play Store von 200 Megabyte nicht übersteigen (Google LLC, 2025c).
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7.4. Benchmark
Auch wenn mein eigener Prototyp noch nicht einsatzbereit ist, soll in Vorbereitung auf seine
Fertigstellung der Durchsatz anderer Clients gemessen werden. Es wurden der offizielle OpenVPN-
Client v2.6.14 (OpenVPN contributors, 2025) und der intern entwickelte Client ([Firmen-interne
Quelle], Bastian Kummer, 2018) getestet.

Die Testumgebung bestand aus einer Ubuntu-Linux Virtual Machine (VM), die sowohl als
OpenVPN- als auch als iperf3-Server diente. Der jeweilige OpenVPN-Client lief auf dem Host-
Betriebssystem und verband sich zum OpenVPN-Server auf der VM. Die OpenVPN-Verbindung war
dabei über UDP und mit AES-256-GCM konfiguriert. Über diese Verbindung wurden dann jeweils drei
iperf3-Tests auf dem Host-Betriebssystem gestartet. Zusätzlich wurden zwei Baselines erfasst: Eine
direkte Verbindung zu localhost und eine direkte Verbindung zur VM ohne VPN.

Abbildung 9 zeigt den iperf3-Durchsatz über alle vier Verbindungen. Die direkte Verbindung zum
localhost (Baseline) erreicht 106 Gbit/s im Durchschnitt von drei Tests. Das ist das praktisch
erreichbare Maximum auf dem System. Die direkte Verbindung zur VM ohne VPN hat einen deutlich
geringeren durchschnittlichen Durchsatz von 3,99 Gbit/s. Allein das virtualisierte VM-Netzwerk
verringert den für die VPN-Clients erreichbaren Durchsatz also enorm. Beide Clients erreichen im
Durchschnitt über drei iperf3-Tests ca. 375 Mbit/s.
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Abbildung 9: iperf3-Benchmark der OpenVPN-Clients im Vergleich mit Baseline-Messungen

Da in Abbildung 9 die Benchmark-Ergebnisse der OpenVPN-Clients nicht so gut erkennbar sind,
folgt noch eine Darstellung ohne die Baselines. Man kann in Abbildung 10 sehen, dass beide
OpenVPN-Clients fast gleich abschneiden, auch wenn die interne Implementierung einen minimalen
Vorsprung (379 Mbit/s) vor dem offiziellen Client hat (373 Mbit/s). Das sind zwar im Vergleich mit
der Baseline zur VM ohne VPN weniger als 10 %, aber immer noch fast das vierfache der Median-
Downloadgeschwindigkeit deutscher Festnetzanschlüsse von 101 Mbit/s (Statista GmbH, 2025).
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Abbildung 10: iperf3-Benchmark der OpenVPN-Clients ohne Baseline-Messungen

Bei einem Benchmark des Prototypen in Go wäre zu erwarten, dass er etwas schlechter performen
würde als die beiden in C geschriebenen Clients, da Go-Binaries eine Runtime für Garbage-
Collection enthalten, die einen kleinen Performance-Overhead erzeugt.
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8. Fazit
Ausgangspunkt der Arbeit war die Analyse der bestehenden Situation bei Securepoint, bei der
Abstürze der bestehenden OpenVPN-Bibliothek durch Speicherzugriffsverletzungen, suboptimale
Performance auf bestimmten Plattformen (z. B. iOS), sowie ein hoher Integrationsaufwand und eine
unkomfortable Build-Konfiguration zu wiederkehrenden Problemen führten. Diese
Herausforderungen motivierten die Suche nach einer Alternative zur bestehenden C-basierten
Lösung.

Im Rahmen dieser Arbeit wurde das OpenVPN-Protokoll detailliert technisch analysiert. Dabei
wurden sowohl die Struktur einzelner OpenVPN-Pakete als auch der Aufbau von Sessions
umfassend dokumentiert. Im Anschluss wurde die bestehende C-Implementierung untersucht. Dabei
wurde deutlich, dass einige technische Altlasten (z. B. eigene Buffer-Logik und fehlende
Testabdeckung) die Wartbarkeit und Erweiterbarkeit erschweren können. Insbesondere der in C
notwendige manuelle Umgang mit Speicher und die unzureichende Isolation von Plattform-
spezifischem Code stellen erhebliche Risiken dar.

Basierend auf einem fundierten Vergleich moderner Programmiersprachen wurde Go für die
Reimplementierung ausgewählt. Die Entscheidung begründet sich in der Kombination aus
Speichersicherheit, einfacher Cross-Plattform-Kompatibilität, guter Tooling-Unterstützung und einer
insgesamt reduzierten Komplexität gegenüber Alternativen wie Rust.

Die Implementierung des Prototyps fokussierte sich auf zentrale Teile des Protokolls, etwa die
Paketstruktur, TLS-Handshake, den Aufbau von Sessions und die Verarbeitung der Data-Channel-
Nachrichten. Die Software wurde mit besonderem Fokus auf Testbarkeit und Trennung von
plattformspezifischen Abhängigkeiten entworfen. Der Einsatz automatisierter Tests wurde dabei von
Anfang an mitgedacht, was die Produktreife in Zukunft verbessern kann.

Auch wenn der vollständige Funktionsumfang des ursprünglichen Clients aus Zeitgründen nicht
komplett nachgebildet werden konnte, zeigt der entwickelte Prototyp exemplarisch, dass die
gewählte Sprache und Architektur prinzipiell geeignet sind, Funktionsparität mit der bestehenden
Lösung zu erreichen.

Die Ergebnisse dieser Arbeit legen nahe, dass eine vollständige Migration des OpenVPN-Clients zu
Go technisch machbar und langfristig potenziell vorteilhaft ist. Zukünftige Arbeiten sollten sich auf
die Vervollständigung und Erweiterung des Funktionsumfangs konzentrieren. Auch eine
Performance-Evaluierung der Go-Implementierung wäre wünschenswert.

Sollte die neue Library weiterentwickelt werden, empfiehlt sich ein Security-Audit der Software.
Damit könnten gegebenenfalls Sicherheitslücken gefunden und geschlossen werden, bevor die
Library in Produkten von Securepoint eingesetzt wird.

48



9. Glossar

AES. Advanced Encryption Standard. symmetrisches, Block-basiertes Verschlüsselungsverfahren 7

API. Application Programming Interface. Programmierschnittstelle, um mit einem
Programm in Software zu interagieren

4, 23, 29, 33, 35, 46

CI-Pipeline. automatisch ausgeführtes Programm zum Testen von Software-Änderungen in der
zentralen Code-Verwaltung; CI ist kurz für "Continuous Integration"

34, 35

ChaCha-Verschlüsselungsverfahren. symmetrisches, Strom-basiertes Verschlüsselungsverfahren 7

DTLS. Datagram Transport Layer Security. TLS über unzuverlässige Verbindungen 21

DoS. Denial of Service 8, 9, 22

Elgamal-Verschlüsselungsverfahren. asymmetrisches Verschlüsselungsverfahren 7

GNU GPLv2. GNU General Public License Version 2. Copyleft-Lizenz; fordert die Copyleft-
Lizenzierung bei Nutzung einer mit ihr lizenzierter Software

3

HMAC. Hash-based Message Authentication Code. Integritätsbeweismechanismus für
Nachrichten über unsichere Kanäle

8, 9, 19, 20

HTTP. Hypertext Transfer Protocol

HTTPS. Hypertext Transfer Protocol Secure. HTTP über eine TLS-Verbindung 11, 21

QUIC. Quick UDP Internet Connections. UDP-basiertes Transportprotokoll, das bessere Performanz
als TCP zum Ziel hat

21

RSA. Rivest-Shamir-Adleman. asymmetrisches Kryptosystem 7

Serialisierung. Übersetzung von Daten in ein speicher- oder transportfähiges Format 26, 46

Socket. Kommunikationsschnittstelle des Betriebssystems, unter anderem für
Protokolle auf Transportschicht

4, 11, 25, 26, 36, 39, 43

Software-Test. in Programmcode definierte Prüfung, die Fehler eines Programms erkennen
kann

35, 37, 46

TCP. Transmission Control Protocol. zuverlässiges,
verbindungsorientiertes Protokoll auf Transportschicht

10, 11, 12, 14, 15, 21, 36, 39, 41, 50, 51

TLS. Transport Layer Security. Verschlüsselungsprotokoll zur sicheren
Datenübertragung über unsichere, zuverlässige Netze

11, 12, 13, 15, 16, 20, 21

TUN-Device. Virtuelle Netzwerkadapter des Betriebssystems 10, 11, 23, 25, 26, 27, 36, 43, 44

UDP. User Datagram Protocol. verbindungsloses Protokoll auf
Transportschicht

10, 11, 12, 21, 36, 39, 41, 47, 51

VM. Virtual Machine. Software-basiertes Computersystem, das auf einem physischen Host-Rechner
läuft und sich wie ein eigenständiger Computer mit Betriebssystem verhält

47

VPN. Virtual Private Network. Privates Netzwerk, das vom Betriebssystem simuliert
wird, meist um auf entfernte private Netzwerkressourcen zuzugreifen

3, 5, 6, 18, 23, 47
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